3rd lecture: ENZYMES

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

ENZYMES

A many proteins are known with different biological functions:

Regulator proteins

Transport proteins

Protecting proteins

Toxins

Reserve proteins

Contractile proteins

Structural proteins

ENZYMES - catalysts of reactions

ε ν ζ υ μ η = "in yeast" (greek) 1878 Kühne

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

THERMODYNAMICS OF CATALYSIS

1930- years: Eyring:

During the reaction a higher energy transition complex is formed - activation energy (E*) is neded:

$$k_{_{r}} = \frac{kT}{h}e^{\frac{\Delta S^{*}}{R}} \cdot e^{-\frac{\Delta H^{*}}{RT}} \approx const \cdot e^{-\frac{\Delta E^{*}}{RT}}$$

 k_{r} - reaction rate constant

T - absolute temperature (Kelvin)

k - Boltzmann constant (1,37.10-23 J/°K)

h - Planck constant (6,62.10-34 Js)

progress of reaction

This energy is reduced by catalysts – the reaction rate is higher but the chemical equilibrium is not affected.

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

3

Comparison of chemical and enzymatic catalysis

Reaction	Catalyst	Activation energy kJ/mol	k _{rel} 25 °C
H_2O_2 $H_2O + 1/2O_2$	-	75	1
	I-1	56,5	$2,1.10^3$
	catalase	26,8	3,5.108
Casein + nH ₂ O	H ⁺	86	1
(n+1) peptide	trypsin	50	$2,1.10^6$
Sucrose + H ₂ O	H ⁺	107	1
glucose+fructose	invertase	46	5,6.1010
Linoleic acid + O ₂	-	150-270	1
linolene peroxide	Cu ²⁺	30-50	~102
	lipoxygenase	16,7	~ 107

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

Catalysis

General cases of the enzymatic catalysis (taken from general chemistry):

- 1. acid-base catalysis
- 2. covalent catalysis
- 3. metal ion catalysis

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

5

ENZYMES

In a cell the organic compounds may react on many different way – but these reactions are very slow because of the activation energy barrier. The enzymes open a certain reaction route.

Enzyme-substrate complex

A higher energy transition complex is formed:

$$E + S \rightleftharpoons ES^* \qquad E + F$$

The substrate attached to the substrate binding site, that is only a small portion of the surface of the enzyme molecule (sack/pocket).

Other domains on the surface:

- Catalytic domain = ACTIVE CENTER the site for chemical reaction
- Sites for modulators (inhibitors, activators, S, P, metal ions)
- Sites for covalent modification of enzyme (phosphorylation, glycosylation, proteolysis)

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

7

Substrate binding site

The substrate binding site is only a small spot/pocket on the surface of enzyme molecule

Enzyme-substrate interactions

... between the molecular surfaces:

Secondary (noncovalent) interactions:

- electrostatic
- Van der Waals and
- hydrophobic interactions

Effects in enzyme-catalysis:

- > lock and key model
- proximity effect
- > orientation effect
- induced fit (Koshland-conformation change)

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

How is the proper surface formed?

The folded peptide chains form the three dimensional structure of protein (tertiary, quaternary structure). The side chains of amino acids can be:

- apolar (alkyl groups)
- polar (-OH, -SH groups)
- ionic (-NH₂, -COOH groups)

Reactive side chains

Acidic: -COOH: Asp, Glu Basic: -NH₂: Lys, Arg

terminal -COOH and -NH₂

Amide: -CO-NH₂: Asn, Gln

Polar: -OH: Ser, Thr -SH: Cys, -S-CH₃: Met

Imidazole: His Guanidine: Arg

H-bonds: C=O H-O- C=O H-NH-

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

Biology, biotechnology

Enzyme catalysed reactions

Only thermodynamically possible reactions can be catalysed $\Delta G < 0$

All enzyme catalysed reactions are reversible, tends to an equilibrium. but: the equilibrium can be shifted, e.g., with product removal.

Proteins are denaturable: t, pH, ionic strength (salting out), organic solvents

Specifity: substrate-specifity

group-specifity stereo-specifity region-specifity

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

Pros for enzyme catalysed reactions

Higher reaction rate: even 106-1012 x faster

Mild reaction condition (temperature, pressure, pH)

Sophisticated selectivity, better than in organic chemistry

Easy control

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

Group	Reaction catalyzed	Typical reaction	Enzyme example(s) with trivial name
EC 1	To catalyze oxidation/reduction reactions; transfer of H and O atoms or electrons from	$AH + B \rightarrow A + BH$ (reduced)	Dehydrogenase, oxidase
Oxidoreductases	one substance to another	$A + O \rightarrow AO$ (oxidized)	
EC 2	Transfer of a functional group from one substance to another. The group may be	AB + C → A + BC	Transaminase, kinase
Transferases	methyl-, acyl-, amino- or phosphate group		
EC 3	Formation of two products from a substrate	AB + H ₂ O → AOH + BH	Lipase, amylase, peptidase
Hydrolases	by hydrolysis		
EC 4	Non-hydrolytic addition or removal of groups from substrates. C-C, C-N, C-O or C-S bonds	RCOCOOH \rightarrow RCOH + CO ₂ or [X-A-B-Y] \rightarrow [A=B + X-Y]	Decarboxylase
Lyases	may be cleaved		
EC 5	Intramolecule rearrangement, i.e. isomerization changes within a single	$AB \rightarrow BA$	Isomerase, mutase
Isomerases	molecule		
EC 6	Join together two molecules by synthesis of new C-O, C-S, C-N or C-C bonds with	X + Y+ ATP → XY + ADP + Pi	Synthetase
Ligases	simultaneous breakdown of ATP		
THE RESTREE OF THE PARTY OF THE	BME Alkalmazott Biotechnológia és	<u></u>	21