3rd lecture: ENZYMES

BME Alkalmazott Biotechnológia és Élelmiszertadomány Tanszék

### **ENZYMES**

A many proteins are known with different biological functions:

Regulator proteins

Transport proteins

Protecting proteins

Toxins

Reserve proteins Contractile proteins

Structural proteins

**ENZYMES - catalysts of reactions** 

 $\varepsilon \nu \zeta \upsilon \mu \eta = \text{"in yeast" (greek)}$  1878 Kühne

BME Alkalmazoπ Biotechnológia és Élehniszertadomány Tanszék

### THERMODYNAMICS OF CATALYSIS

1930- years: Eyring:

During the reaction a higher energy transition complex is formed - activation energy ( E\*) is neded:



 $\begin{array}{l} k_r-\text{reaction rate constant} \\ T-\text{absolute temperature (Kelvin)} \\ k-\text{Boltzmann constant } (1,37.10\text{-}23~\text{J}^\circ\text{K}) \\ h-\text{Planck constant } (6,62.10\text{-}34~\text{Js}) \end{array}$ 

This energy is reduced by catalysts - the reaction rate is higher

but the chemical equilibrium is not affected.

BME Alkalmazott Biotechnológia és Élelmiszertadomány Tanszék

progress of reaction

### Comparison of chemical and enzymatic catalysis

| Reaction                       | Catalyst        | Activation       | k rel      |
|--------------------------------|-----------------|------------------|------------|
|                                |                 | energy<br>kJ/mol | 25 °C      |
|                                |                 |                  |            |
|                                | I <sup>-1</sup> | 56,5             | $2,1.10^3$ |
|                                | catalase        | 26,8             | 3,5.108    |
| Casein + nH <sub>2</sub> O     | H <sup>+</sup>  | 86               | 1          |
| (n+1) peptide                  | trypsin         | 50               | 2,1.106    |
| Sucrose + H <sub>2</sub> O     | H+              | 107              | 1          |
| glucose+fructose               | invertase       | 46               | 5,6.1010   |
| Linoleic acid + O <sub>2</sub> | -               | 150-270          | 1          |
| linolene peroxide              | Cu 2+           | 30-50            | ~102       |
|                                | lipoxygenase    | 16,7             | ~ 107      |

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

## Catalysis

General cases of the enzymatic catalysis (taken from general chemistry):

- 1. acid-base catalysis
- 2. covalent catalysis
- 3. metal ion catalysis

### **ENZYMES**

In a cell the organic compounds may react on many different way – but these reactions are very slow because of the activation energy barrier. The enzymes open a certain reaction route.





BME Alkalmazort Biotechnológia és Élelmiszertudomány Tanszék

### Enzyme-substrate complex

A higher energy transition complex is formed:

 $E + S \rightleftharpoons ES^* \qquad E + P$ 

The substrate attached to the substrate binding site, that is only a small portion of the surface of the enzyme molecule (sack/pocket).

Other domains on the surface:

- Catalytic domain = ACTIVE CENTER the site for chemical reaction
- Sites for modulators (inhibitors, activators, S, P, metal ions)
- Sites for covalent modification of enzyme (phosphorylation, glycosylation, proteolysis)



### Substrate binding site

The substrate binding site is only a small spot/pocket on the surface of enzyme molecule



### Enzyme-substrate interactions

... between the molecular surfaces:

Secondary (noncovalent) interactions:

- > electrostatic
- Van der Waals and
- hydrophobic interactions

Effects in enzyme-catalysis:

- > lock and key model
- > proximity effect
- > orientation effect
- > induced fit (Koshland-conformation change)









## How is the proper surface formed? The folded peptide chains form the three dimensional structure of protein (tertiary, quaternary structure). The side chains of amino acids can be: - apolar (alkyl groups) - polar (-OH, -SH groups) - ionic (-NH<sub>2</sub>, -COOH groups)

# Reactive side chains Acidic: -COOH: Asp, Glu Basic: -NH<sub>2</sub>: Lys, Arg terminal -COOH and -NH<sub>2</sub> Amide: -CO-NH<sub>2</sub>: Asn, Gln Polar: -OH: Ser, Thr -SH: Cys, -S-CH<sub>3</sub>: Met Imidazole: His Guanidine: Arg H-bonds: C=O ...... H-O- C=O ...... H-NH-



### Enzyme catalysed reactions

Only thermodynamically possible reactions can be catalysed  $\Delta G < 0$ 

All enzyme catalysed reactions are reversible, tends to an equilibrium. but: the equilibrium can be shifted, e.g., with product removal.

Proteins are denaturable: t, pH, ionic strength (salting out), organic solvents

Specifity: subs

substrate-specifity group-specifity stereo-specifity region-specifity

BME Alkalmazon Biotechnológia és Élelmiszertudomány Tonszék

## Pros for enzyme catalysed reactions

Higher reaction rate: even  $10^6$ - $10^{12}$  x faster

Mild reaction condition (temperature, pressure, pH)

Sophisticated selectivity, better than in organic chemistry

Easy control

BME Alkalmazort Biotechnológia és Élelmiszertudomány Tanszék

# Necessary reaction partners HOLOENZYME APOENZYME + COFACTOR METALION COENZYME Mg, Ca, Zn, Fe, Cu, Mo Prostetic group stable covalent bond FAD(H<sub>2</sub>), Pyridoxal-P(B<sub>8</sub>) BME Alkalmazort Biotechnologia 4s Elchaiuszertsdomainy Teaszek Cosubstrate Sztoichiometric use, must be regenerated NAD(H), ATP 18





| Group           | Reaction catalyzed                                                                          | Typical reaction                                                                              | Enzyme<br>example(s) with<br>trivial name |
|-----------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|
| EC 1            | To catalyze oxidation/reduction reactions;                                                  | $AH + B \rightarrow A + BH$ (reduced)                                                         | Dehydrogenase,<br>oxidase                 |
| Oxidoreductases |                                                                                             | $A + O \rightarrow AO$ (oxidized)                                                             |                                           |
| EC 2            | Transfer of a functional group from one substance to another. The group may be              | $AB + C \rightarrow A + BC$                                                                   | Transaminase,<br>kinase                   |
| Transferases    | methyl-, acyl-, amino- or phosphate group                                                   |                                                                                               |                                           |
| EC 3            | Formation of two products from a substrate                                                  | $AB + H_2O \rightarrow AOH + BH$                                                              | Lipase, amylase,<br>peptidase             |
| Hydrolases      | by hydrolysis                                                                               |                                                                                               |                                           |
| EC 4            | Non-hydrolytic addition or removal of groups<br>from substrates, C-C, C-N, C-O or C-S bonds | $\begin{array}{c} RCOCOOH \to RCOH + \\ CO_2 \ or \ [X-A-B-Y] \to \\ [A=B + X-Y] \end{array}$ | Decarboxylase                             |
| Lyases          | may be cleaved                                                                              |                                                                                               |                                           |
| EC 5            | Intramolecule rearrangement, i.e. isomerization changes within a single                     | $AB \Rightarrow BA$                                                                           | Isomerase,<br>mutase                      |
| Isomerases      | molecule                                                                                    |                                                                                               |                                           |
| EC 6            | Join together two molecules by synthesis of<br>new C-O, C-S, C-N or C-C bonds with          | $X + Y + ATP \rightarrow XY + ADP + Pi$                                                       | Synthetase                                |
| Ligases         | simultaneous breakdown of ATP                                                               |                                                                                               |                                           |