FID= Free Induction Decay

MOST important NMR active nuclei $I \neq 0$ Spin quantum number

	$^{1}\mathrm{H}$	¹³ C	^{15}N	^{14}N	D	¹⁹ F	³¹ P
Natural	100	1%	0,4	99,6	0,01	100	100
abundance	%		0⁄0	0⁄0	0⁄0	0⁄0	%
spin	1/2	1/2	1/2	1	1	1/2	1/2

¹²C, ¹⁶O not NMR active!

Even mass number and even atomic number $\Rightarrow I = 0$ (¹²C, ¹⁶O)

Even mass number and odd atomic number $\Rightarrow I = integer ({}^{14}N, {}^{2}H, {}^{10}B)$

Even mass number \Rightarrow **I** = 1/2, 3/2, 5/2...etc (¹H, ¹³C, ¹⁵N, ³¹P)

Most important spectral information:

chemical shift spin-spin coupling area under peaks (integral)

Chemical shift

$$\nu_0 = \frac{\gamma}{2\pi} \cdot B_0$$

 $v_1 = \frac{\gamma}{2\pi} \cdot (1 - \sigma) B_0$

Gyromagnetic ratio

V (Hz)	499840000	399950000	800130000
1	499839783	399949826	799743653
2	499839503	399949602	799743204
3	499838347	399948677	799741355
4	499838330	399948663	799741328
5	499838276	399948620	799741241
6	499838260	399948607	799741216
7	499837458	399947966	799739933

Resonance frequency is in MHz range, small difference

Dependent on B₀

Chemical Shift

Difference to a reference material, devided by field strength no field dependence any more

$$\mathcal{O} = \frac{\mathcal{N} - \mathcal{N}_0}{\mathcal{N}_0} \times 10^6 \qquad \downarrow \\ \delta \text{ scale, ppm}$$

Reference: TMS (very often) 0 ppm (cheap, inert, "nice" signal)

Solvent, temperature, pH dependent!

Sample

Solvents: should not contain H!

....

D is used for maintaining B₀ stable and constant "lock"

(Very) insensitive

Non invasive

Most detailed information about structure (besides Xray)

Electron density has the biggest effect:

Electronwithdrawing substituent increases δ .

${}^{1}\mathbf{H}$

Triethyl amine

Acetone

In the ¹H spectrum it is proportional to the number of nuclei

0.99

Spin-spin coupling

in ¹H spectrum

Spin state of neighbouring nuclei seen through chemical bonds Splitting of peaks Measured in Hz, not dependent from magnetic field Same for the coupling partners VERY dependent from bond angle (eg, and everything else) Equivalent nuclei: chemically and magnetically equivalent: their relationship to the remaining part of the molecule is the same

Chemically equivalent but magnetically not!

No visible coupling between equivalent nuclei, but always between nonequivalent ones!

n+1-rule: *n* equvalent partners results in *n*+1 multiplicity (IF I=1/2) Pascal triangle

HSP-03-534

Coupling caused by different nuclei

If there are more different couling partners, the couplings caused are superimposed onto each other

Can be derived step by step

Splitting Patterns

 $_{3}H$

Homework

