
2. Thermodynamics of systems
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2.1 The Helmholtz free energy2.1 The Helmholtz free energy

Ssystem +Ssurroundings  0

      We define two further thermodynamic functions 
which are suitable for describing processes in closed 
but not isolated systems.

Constant T and V: Helmholtz free energy (A)
Constant T and p:  Gibbs free energy (G)

2014.

(1.78)

The only thermodynamic driving force of the changes in 
the universe is the increase of entropy. 
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Constant T and V:

system
V=const.

surroundings 
(heat bath)

Qrev

(E.g. a closed flask in 
which a slow process is 
taking place)

The only interaction with the 
surroundings is the Q heat 
exchange.
S1 +S2  0

T

Q
S rev 2

Negative since it is defined 
for the system: system gain.

01 
T

Q
S rev ·(-T)

01  STQrev

At constant volume: Qrev = U1.  Leave out the subscript 1: 

0 STU

11

22

(2.1)

Fig. 2.1

T=const.
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0STU  

So we can define a function which decreases in 
isothermal-isochor processes and has a minimum at 
equilibrium.

A = U - TS
     In  closed systems the direction of isothermal-isochor 
processes and the equilibrium can be expressed as 
follows:

AT,V  0    (no work done)      
 dAT,V  0    (no work done) 

    In a closed system of constant temperature and 
volume (if no work is done) the Helmholtz free energy 
decreases in a spontaneous process and has a minimum 
at equilibrium.

(2.2)

(2.3)
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The differential expression of Helmholtz free energy:

             dA = dU - TdS - SdT         dU = - pdV + TdS

dA = - pdV - SdT

     The change of Helmholtz free energy in an isothermal 
reversible process is equal to the work. We can prove 
this in the following way: 

Write the differential expression of Helmholtz free energy, 

keep T constant, allow other than pV work, too.

(2.4)
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dAT = dU - TdS - SdT

dAT = dU - Qrev                   dU = Wrev + Qrev 

dAT = Wrev 

AT = Wrev

     This is why A is sometimes called the work 
function. Arbeit = work (in German)

U = A + TS

„bound” energy 
(cannot be converted 
to work)

TdS = Qrev

Why „free” energy ?

(2.5)
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2.2 2.2 Gibbs free energy (G)Gibbs free energy (G)

It describes systems ,which are in thermal and mech-
anical interaction with the surroundings (T1 = T2, p1 = p2). 

S1 +S2  0
T

Q
S rev 2

01 
T

Q
S rev ·(-T)

01  STQrev Qrev = H1

0 STH

(at constant pressure if 
no other work is done)

system
T=const.
p=const.

surroundings

T, p
Qrev

11

22

(2.6)Fig. 2.2
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G = H - TSThe Gibbs free energy:

In a closed system of constant temperature and 
pressure, if no other than pV work is done, the Gibbs 
free energy decreases in a spontaneous process, 
and it has a minimum at equilibrium.

GT,p  0    (no other than pV work)      
    
dGT,p  0    (no other than pV work) 

(2.7)

(2.8)
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The relationship between G and A

G = H - TS = U + pV - TS = A + pV

dG = dU +pdV +Vdp- TdS - SdT 

dG = Vdp - SdT

dU = -pdV +TdSIf there is pV work only :

In differential form:

(2.9)

(2.10)

(2.11)
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At constant temperature and pressure  (in a 
reversible process), if there is no other than pV work:

dGp,T = 0

If there is other (non-pV) work:

dU = Wother-pdV +TdS

dGp,T = Wother

Gp,T = Wother

In an isothermal, isobaric 
reversible process the change 
of Gibbs free energy  is equal 
to the non-pV work.

The chemical potential of a pure substance (J/mol) 

Tpn

G

,















dG = dU +pdV +Vdp- TdS - SdT 

(2.12)

(2.13a)

(2.13b)

(2.14)
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2.3. The first and second derivatives of the 2.3. The first and second derivatives of the 
thermodynamic functionsthermodynamic functions

     Useful relationships can be obtained from the four 
thermodynamic functions (U, H, A, G) by partial 
derivation.
     The relations between the second derivatives are 
called Maxwell relations.

     The result is independent of the order of derivation., 
for example:

VS

U

SV

U








 22

(2.15)
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U dU = -pdV + TdS

p
V

U

S













T

S

U

V














SV V

T

S

p

SV

U





































2

The second derivatives:

The first derivatives:

(2.16a)

(2.16b)

(2.16c)
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H

dU = -pdV + TdS

V
p

H

S













T

S

H

p














Sp p

T

S

V

Sp

H





































2

The second derivatives:

The first derivatives:

H = U + pV  dH = dU + pdV + Vdp

dH = Vdp + TdS (2.17a)

(2.17b)

(2.17c)
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A dA = -pdV - SdT (2.18a)

(2.18b)

(2.18c)
The S-V functions can be determined 
from measurable quantities (see 2.18c)

dV =(
∂V
∂T )

p
dT V+(

∂V
∂ p )

T
dpV=0

(
∂ p
∂T )

V
=−

(
∂V
∂T )

p

(
∂V
∂ p )

T

= α
κT

κT=−
1
V (

∂V
∂ p )

T

Isothermal compessibility

α=
1
V (

∂V
∂T )

p

thermal expansion coeff.

= α
κT
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G dG = Vdp - SdT (2.19a)

(2.19b)

(2.19c)

The S –p functions can be determined from 
measurable quantities

=−V α
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The pressure dependence of enthalpy at constant 
temperature

H = G + TS                Derive with respect to T!

TTT
p

S
T

p

G

p

H







































pT
T

V
TV

p

H


























Using this formula we can prove that the enthalpy of an 
ideal gas is independent of pressure (at constant 
temperature).

(2.20)

See 2.19b



Cmp−CmV=
1
n ((∂U

∂V )
T
(
∂V
∂T )

p
+ p(

∂V
∂T )

p)=
1
n (( ∂U

∂V )
T
+ p)V α

dU p=(
∂U
∂T )

V
dT p+(

∂U
∂V )

T
dV p (

∂U
∂T )

p
=(

∂U
∂T )

V
+(

∂U
∂V )

T
(
∂V
∂T )

p

Cmp−CmV=
1
n ((∂ H

∂T )
p
−(

∂U
∂T )

V )=
1
n ((∂U

∂T )
p
+ p (

∂V
∂T )

p
−(

∂U
∂T )

V )

dUT=−pdV T+TdST (
∂U
∂V )

T
=T (

∂ S
∂V )

T
−p=T (

α
κT )−p

General relation between Cmp and Cmv

Cmp−CmV=
1
n

VT α
2

κT

p=const., i.e., p and V not independent

H=U+pV

U=U(V,T) : dT p

See 2.18c
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Thermodynamic functions of state

(Closed system, pV work only) 

Internal energy: U = W + Q U =  QV

      H =  Qp

Helmholtz function:  A = U - TS AT,V   0

GT,p   0Gibbs function:      G = H - TS

(2.21a)

(2.21b)

(2.21c)

(2.21d)

Enthalpy:          H = U + pV
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A
UG

H
pV TS

A is the smallest

U = A + TS

G = A + pV 

H = U + pV= A+TS+pV

H is the largest

Thermodynamic functions of state

H = U + pV

A = U - TS

G = H - TS

A < G < U < H
Fig. 2.3

(2.22)



2020

2.4. p-T phase diagram2.4. p-T phase diagram

OA: subl. curve

AB: melting curve

AC: vaporization    
     curve

A: triple point

C: critical point

T

p

solid fluid

gas

O

A

B

C
liquid

Fig. 2.4
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Solid  liquid   melting      positive slope (except for water)

Solid gas   sublimation

Liquid  gas    boiling

Equilibrium of two phases,  p and T are not independent

A:triple point, three phases are in equilibrium. Its 
temperature and pressure are characteristic of the 
substance.

E.g. Water: 6.11 mbar, 273.16K

     CO2: 5.11 bar, 216.8K

  At atmospheric pressure CO2 does not exist in liquid state.

Dry ice snow falling on Mars
(2006-2007, NASA's Mars 
Reconnaissance Orbiter)
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C: critical point: The difference between liquid and 
vapor phase diminishes.

At greater temperatures and pressures only one 
phase exists: fluid (supercritical) state.

liquid

vapor

Let us heat a liquid-vapor system in a 
vessel of an appropriate volume. (We 
are going from left to right on the vapor 
pressure curve.) It can be observed:

The density of the liquid decreases. 
The density of the vapor increases.

Other physical properties (e.g. refractive index) also 
approach each other. Finally we reach to a point where the 
difference between the two phases diminishes                      
 critical point.

Fig. 2.5
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Critical temperature, 
above which the gas cannot be liquefied

   Critical pressure, what is necessary to liquefy the gas 
at the critical temperature yet.

   Critical volume,     what 1 mol gas occupies at 
the critical pressure and temperature

     The critical data are characteristic of the substance.

Examples: 

Water:    TC = 647.4 K,  pC = 221.2 bar
CO2:     TC = 304.2 K,  pC = 73.9 bar



2424

TC below room temperature:  O2, N2, CO, CH4

These gases cannot be liquefied at room temperature.

TC above room temperature :  CO2, NH3, Cl2, C3H8

These gases can be liquefied at room temperature
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2.5 Thermodynamic interpretation of the2.5 Thermodynamic interpretation of the
 p-T diagram (the Clapeyron equation) p-T diagram (the Clapeyron equation)

    At given T and p the condition of equilibrium is the 
minimum of G.

a b

One component, two phases (a and b)

At equilibrium the molar Gibbs free energy 
of the component must be equal in the two 
phases. Otherwise there is a flow of the 
substance from the phase where Gm=G/n is 
higher to the phase where Gm is lower.

Fig. 2.6
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Three cases:

1. Gm
a > Gm

b : substance goes from a to b 

2. Gm
a < Gm

b : substance goes from b to a 

3. Gm
a = Gm

b : equilibrium 

1, 2: Macroscopic 
process takes 
place
3: No macroscopic 
process

     On the molecular level there are changes. The rates 
of the processes in opposite direction are the same (e.g. 
in liquid vapor equilibrium the macroscopic rates of 
evaporation and of condensation are equal).

The equilibrium is dynamic (and not static), 
fluctuation occurs.   
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Derivation of the Clapeyron equation:
b
m

a
m GG 

If we change T slightly, p and G  also change.

The condition of maintaining equilibrium:

b
m

a
m dGdG  SdTVdpdG 

dTSdpVdTSdpV b
m

b
m

a
m

a
m 

dTSSdpVV a
m

b
m

a
m

b
m )()( 

m
a
m

b
mm

a
m

b
m SSSVVV 

(equilibrium) (2.23)

(2.24)
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T

H
S

V

S

dT

dp m
m

m

m 







m

m

VT
H

dT
dp






This is the Clapeyron equation  (the equation of one 
component phase equilibrium).

It is valid for: liquid-vapor
              solid-liquid

             solid-vapor
                       solid-solid equilibrium

 Nothing was neglected in the derivation.

(2.24)
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We can obtain the curves of the p-T diagram by integration 
of the Clapeyron equation. For exact integration Hm and Vm 

have to be known as functions of temperature.

dT

dp is the slope of the curve.  

1. The melting point curve is the steepest

      Reason: Vm is small (and it is in the denominator)

2. Near the triple point the sublimation curve is steeper 
than the boiling point curve.

   Reason:      Hm,subl = Hm,fus +  Hm,evap 
Vm (sublimation) is roughly the same (Vm(vapor))

Qualitative interpretation:

(2.25)
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3. In most cases the melting point curve has a positive slope 
because Vm is positive (the substance expands at melting).

        Exception: water, Vm =Vm(l)-Vm(s)< 0, see 
the figure below (water contracts until 4 oC)

T

p

solid fluid

gas

O
A

B

C
liquid

The slope of AB is 
negative.
Melting point 
decreases as the 
pressure increases 
(operation of ice-
skate). 

Fig. 2.7
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2.6.One component liquid-vapor, solid-vapor 2.6.One component liquid-vapor, solid-vapor 
equilibria, the Clapeyron Clausius equationequilibria, the Clapeyron Clausius equation

      Experience:The vapor pressure of a pure liquid 
depends on temperature only.

t

p

Exponential-like 
function

Fig. 2.8
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If the logarithm of the vapor pressure is plotted against 
the reciprocal of temperature, we obtain a straight line:

lg{p}

α

 B
T

A
p lg

A, B: constants

tanα= -A


Pa

Pap
p

1

)(


Fig. 2.9

(2.26)

1/T



3333

The derivation of the Clapeyron Clausius equation

Apply the Clapeyron equation for liquid-vapor equilibrium

m

m

VT

H

dT

dp




 change of molar volume at 

vaporization

molar heat of vaporization

1. step: We neglect the molar volume of the liquid (compared 
to vapor), 

2. step: We regard the vapor as ideal gas.

p

RT
gVV mm  )(

3. step Hm will be denoted by  and regarded 
independent of temperature

Therefore
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2RT

p

dT

dp 



2T

dT

Rp

dp 




dp/p = dlnp, because dlnp/dp = 1/p    (derivative of ln p)

dT/T2 = -d(1/T),  because d(1/T)/dT = -1/T2











T
d

R
pd

1
ln













T
1

d

plnd
R

is taken 
independent of  T 
in following 
integration

A B

(2.27)
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A)   Determination of   from ln{p}-1/T diagram

ln{p}

1/T

α  = - R·tan α

Draw the slope

B)Integration ( is taken independent  of T) 
 

 C
RT

p 


ln

Empirical formula:  B
T

A
p lg

(2.28)

(2.29)

Fig. 2.10
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Integration between limits:













12
12

11
lnln

TTR
pp



       T1, p1, T2, p2, :                                                                               
      if one parameter is unknown, it can be calculated .













211

2 11
ln

TTRp

p 

This Clapeyron Clausius equation contains two constants.

There are other empirical equations, too, for extending 
the linearity of the ln p – 1/T equation: One of them is the

Antoine equation: lg { p }=A−
B

T +C

It contains three constants.

(2.30)

(2.31)
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2.7 Standard Gibbs free energies2.7 Standard Gibbs free energies

The Gibbs free energies are significant  in calculation of 
chemical equilibria.

The standard states are fixed (similarly to enthalpies) 
by international conventions:

Gas:           ideal gas at p0 (105 Pa) pressure (fictitious)
Liquid:       pure liquid at p0 pressure
Solid:         the most stable crystal state at p0 pressure

Hm
0
(298 K)=0For elements in standard state:

At standard pressure the gases are real gases, the enthalpies of
 gaseous elements are not exactly zero.



Standard state of gaseous elements

To obtain the molar enthalpies of real gas of elements, a hypothetical 
process is considered.     

Hm, real
298 K

( p0
)=H m,real

298 K
( p0

)−Hm,ideal
298 K

( p0
)=

∫
p0

0

(
dHm

dp )
T=298 K ,ideal

dp+ H 0 bar , switch on the interactions +∫
0

p0

(
dHm

dp )
T=298 K , real

dp=

0=0,H ideal=H ideal (T )

(
dH
dp )

T
=(

dG
dp )

T
+T (

dS
dp )

T
=V −T (

dV
dT )

p

In an isothermal process the ideal gas is expanded to zero pressure, 
switched on the interactions, then the real gas is compressed back to 1 bar. 

Hm, real
298 K

( p0
)=∫

p0

0

[V m−T (
dV m

dT )
p] dp

It is a small negative 
correction, e.g., 
Ar:       -7 J/mol
Kr:       -17 J/mol
N

2
:       -6 J/mol

C
2
H

6
:   -61 J/mol
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Notation of standard state: 0 as superscript.

     In the definition of Gibbs free energy both 
enthalpy and entropy take part: G = H - TS

At 298,15 K (25 oC) and po = 105 Pa pressure the 
enthalpy of an element in standard state is taken zero 
(for gases it fictitious), that of a compound is taken equal 
to the enthalpy of formation.

Remember: The  zero level of entropy is fixed by the 
third law of thermodynamics: the entropy of pure 
crystalline substance is zero at zero K (subsection 1.18)

By convention:
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     We do not use a similar convention for G but we 
calculate it from H and S.

000

mmm STHG 

         So the standard molar Gibbs free energy of the 
elements at 298 K is not zero.

      Standard Gibbs free energy of formation: the 
Gibbs free energy change of the reaction, in which the 
compound is formed from its elements so that all the 
reactants are in their standard state. It is denoted by 
fG0.

The standard molar Gibbs free energy is

(2.32)
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Standard Gibbs free energy of reaction, rG0.

000

mAAmBBr GGG  

Or from standard Gibbs free energies of formation: at 
any  temperature

)( 00 GG frr 

2SO2 +O2 = 2SO3

rG0 = 2Gm
0(SO3) - 2Gm

0(SO2)- Gm
0(O2)

Or: rG0 = 2fG0(SO3) - 2fG0 (SO2)- fG0 (O2)

0

(2.33)

(2.34)

Example
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The standard Gibbs free energies of compounds and 
elements are given in tables (as functions of temperature). 

Often in forms like this:

T

HG mTm
0

298,
0

, 


Or:

T

HG mTm
0

0,
0

, 


standard molar enthalpy at 
298 K

standard molar enthalpy at 0 
K (different from the usual 
convention), the enthalpy of a 
compound is taken equal to 
the enthalpy of formation     
at 0 K. 

     Advantage: these quantities only slightly depend on 
temperature. It is easier to interpolate.
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2.8 2.8 Gibbs free energy of an ideal gasGibbs free energy of an ideal gas

     Here we study the pressure dependence of the molar 
Gibbs free energy (at constant temperature).

     The complete differential of the Gibbs free energy       
   (for 1 mol substance):

dGm = Vmdp - SmdT

p

RT
Vm 

     At constant temperature the second term can be 
neglected.

Vm can be expressed from the ideal gas law:

(2.35)
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p

dp
RTdGm  Integrate from the standard 

pressure p0 to pressure p.

0
00 ln)ln(ln

p

p
RTppRTGG mm 

Gm( p ,T )=Gm
0 (T )+RT ln

p
p0

μ(p,T)=μ0(T )+RT ln
p
p0

The Gibbs free energy  (chemical potential, (2.14)) 
increases with increasing pressure (the entropy 
decreases).

(2.37)

(2.38)
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2.9 The chemical potential2.9 The chemical potential

    It was introduced by Gibbs  in 1875.  It is denoted by  
[Joule/mol]

The word „potential” refers to physical analogies:

Masses fall from higher to lower gravitational potential.

Charges move from higher to lower electric potential.

     The chemical substance moves from place where 
the chemical potential is higher to a place where it is 
lower (by diffusion).
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Why do we need chemical potential?  Is concentration  
not sufficient to describe the direction of transport of 
substances?      Examples:
1.Two aqueous solutions of NaCl of different 
concentrations are layered on each other.

c = 0.1 mol/l

c = 0.2 mol/l1

2

cNaCl(1) > cNaCl(2) 

NaCl(1) > NaCl(2) 

The salt diffuses from the place 
where the concentration (and the 
chemical potential) is higher to the 
place where the concentration 
(and the chemical potential ) is 
lower.

To explain this process we do not need .
Fig. 2.11
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2. There are two different solvents, water and CCl4 . The 
solute is iodine. The concentration of iodine is higher in CCl4 
than in water

c = 1 mmol/l

c = 2 mmol/l1

2

Aqueous 
I2 soln.

CCl4

 I2 soln.

The iodine will diffuse from 
water to CCl4 because its 
chemical potential is 
smaller in CCl4 than in 
water (although its 
concentration is higher).
Extraction!!

ciodine(1) > ciodine(2) 

odine(1) < iodine(2)

Here we need

The chemical potential is very 
important when we study solutions. 

The chemical potential considers the effect of 
chemical environment 

Fig. 2.12
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So far we have mainly dealt with closed systems 
where the amount of substance does not change.

The complete differentials of the four thermodynamic 
functions for closed systems if there is only pV work            
(no other work):

dG = Vdp - SdT          G = G(T,p)

dA = -pdV - SdT         A = A(T,V)

dH = Vdp + TdS          H = H(p,S)

dU = -pdV + TdS         U = U(V,S)

(2.39a)

(2.39b)

(2.39c)

(2.39d)
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If the amount of substance  also changes (open 
systems), the functions of state  depend on ni-s, too:

G = G(T,p,n1,n2,...)

A = A(T,V,n1,n2,...)

H = H(p,S,n1,n2,...)

U = U(V,S,n1,n2,...)

The complete differentials include the amounts 
of substances, too. E.g.

i
i

npTinpnT

dn
n

G
dT

T

G
dp

p

G
dG

jii

 







































,,,,

ni = n1 ,n2, n3, etc.       j  i 

(2.40)
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2

,,2
1

,,1,,,, 122121

dn
n

G
dn

n

G
dT

T

G
dp

p

G
dG

npTnpTnnpnnT





















































The  has as many terms as the number of components.

E.g. for a two component system:

The derivatives with respect to the amounts of substance 
are called chemical potentials.

The chemical potential of the component i:

jnpTi

i n

G

,,













 j  i

(2.41)

(2.42)
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The chemical potential of a component is equal to the 
change of the Gibbs free energy of the system if one mol 
component is added to infinite amount of substance .

(Infinite so that the composition does not change.)

i
i

npTinpnT

dn
n

G
dT

T

G
dp

p

G
dG

jii

 







































,,,,

The complete differential of G in an open system:

In short:

i
i

idnSdTVdpdG   (2.43)
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At constant temperature and pressure:

i
i

iTp dndG  ,

many components two components

2211, dndndG Tp  

Integrating (with constant composition, p and T):

The Gibbs free energy of the system can be calculated 
from the chemical potentials at constant p and T.

Fig. 2.13

2211T,p nnG  

i
i

iT,p nG   (2.44b)

(2.44a)
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Watch out!

G  Gmi·ni

Molar Gibbs free energies 
of pure components

In solutions S, A and G are not additive.

imi μG:effectSolvent 

(2.45)

This equation (2.46) means the molar Gibbs free 
energy of the pure component i is not equal to its 
partial molar Gibbs free energy  (chemical potential) in 
the same solution.

(2.46)ijk,..,2,1j
n

G

n

G

T,p,niT,pi

i

j






















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Relation between  and Helmholtz free energy:

A = G -pV    and         dA = dG -pdV -Vdp

i
i

idnSdTpdVdA  

i
i

iTV dndA  ,

jnVTi

i n

A

,,















Similarly, it can be proved like (2.42) for G

jnpSi

i n

H

,,















jnVSi

i n

U

,,















At constant volume and temperature:

i
i

idnSdTVdpdG  
(2.47)

substituting

(2.48)

(2.49a) (2.49b) (2.49c)
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i
i

idnSdTVdpdG  

H = G +TS    dH = dG +TdS +SdT

i
i

idnTdSVdpdH  

i
i

ipS dndH  ,
jnpSi

i n

H

,,















U = H -pV    dU = dH -pdV-Vdp

i
i

idnTdSVdpdH  

i
i

idnTdSpdVdU  

i
i

iVS dndU  , jnVSi

i n

U

,,















At constant S and p:

At constant S and V:

(2.49b)

(2.49c)
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The chemical potential of one component (pure) 
substances (see also 2.42):

G = n·Gm m

Tp

G
n

G















,



The chemical potential of a pure substance is equal to 
the molar Gibbs free energy.

The chemical potential of an ideal gas:

0
0 ln

p

p
RTGG mm 

0

0 ln
p

p
RT

mG 00

mG

Standard chemical potential = standard molar Gibbs 
free energy (the Gibbs free energy of 1 mol ideal gas at 
p0 pressure and at the given temperature): see (2.53b).

(2.50) (2.51)

(2.52a) (2.52b)

(2.53a) (2.53b)
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2.10 Conditions for phase equilibria2.10 Conditions for phase equilibria

Consider a multicomponent system with several phases.
P: number of phases
C: number of components.

  W > Bu

  Bu > W

vapor

liquid

liquid

   Bu + W
E.g.:  butanol (Bu)-water (W) 
system

C = 2
P  = 3

Fig.2.14
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In equilibrium the pressure and temperature are equal in 
all the phases.

0,  iiTp dndG 

For C components and P phases:

0
1 1

, 
 

P

j

C

i

j

i

j

iTp dndG 

(2.54a)

(2,54b)

i=1,2,…,C
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Suppose that dni mol of component i goes from phase j to 
phase k (j   k) at constant pressure and temperature. (The 
amounts of all the other components remain unchanged.)

i

j

ii

k

i dndndndn 

j

i

j

i

k

i

k

i dndndG  

j

ii

k

ii dndndG  

 j

i

k

iidndG   (2.55)
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 j

i

k

iidndG  

1. In equilibrium dG = 0, dni  0, consequently:

j

i

k

i  
The chemical potential of component i is equal in the two 
selected phases.

This equation is valid for any phases (P phases).

i
P
i

j
i

2
i

1
i ......  

(2.56)
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     In equilibrium the chemical potential of a component is 
equal in all the phases which are in contact (see also 2.23).

2. No equilibrium. Spontaneous process: 

                           dGp,T < 0                                (2.57)

  k

i

j

ii

j

i

k

ii dndn   00

Substance goes 
from phase j to 
phase k, 
consequence

In a spontaneous process any 
component goes from the phase 
where its chemical potential is larger 
to the phase where its chemical 
potential is smaller.
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2.11 The Gibbs2.11 The Gibbs'' phase rule phase rule

The phase rule determines the number of intensive 
parameters that can be independently varied in 
equilibrium systems. This number depends on the 
number of phases and the number of components.

Phase: a state of matter that is uniform throughout, not 
only in chemical composition but also in physical state.
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     The number of Components: the minimum number of 
independent species necessary to define the composition of 
all the phases present in the system.

     The degrees of Freedom (variance):  is the number of 
intensive variables that can be changed independently 
without changing the number of phases.

If there is no chemical reaction in the system the number of 
components is the number of different chemical substituents.
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The phase rule:

F = C - P + 2

     Derivation: pressure + temperature: 2, the rest (C-P) is 
the number of concentations varied independently.

In case of P phases and C components:

C\P    A       B        C        .

1       c1
A         c1

B       c1
C      .

2       c2
A         c2

B       c2
C      .

3       c3
A         c3

B       c3
C      .

 .         .          .         .         .

C·P concentration data 
but not all of them are 
independent.

(2.58)
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In each phase C-1 concentrations are sufficient. E.g. 
methane-ethane-propane gas mixture. If we know the mole 
fraction of the first two, the third one can be calculated:             
ypr = 1- (ym +ye)            (y: mole fraction)

P phases: P(C-1) concentrations 

In equilibrium the concentrations of a component in different 
phases are not independent (distribution in equilibrium):

1
A = 1

B = 1
C = ...        2

A = 2
B = 2

C = ...

That means P-1 relationships for each component.
For C components C(P-1) has to be substracted 

from (2.59):

F = 2 + P(C-1) - C(P-1) = 2 + CP - P - CP +C = C-P+2

(2.59)

(2.60)

A,B,C phases
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F = C - P + 2

T

p

solid fluid

gas

O

liquid

For one component systems (Fig. 2.15)

P             F

1          2 (T, p)

2          1 (T or p)

3          0 (triple point)

or     F+P=C+2

Fig. 2.15
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F = C - P + 2

Two component systems

P             F

1             3 (T, p, x )₁

2             2 of them 

3               1 of them

For plotting in two 
dimensions one 
parameter has to be  
kept constant (p or t) 

t=const.p

x  , y   ₁ ₁ 0 1 

liquid

vapor
P1

*

P2
*

p-x,y phase diagram (p* pure 
component, x, y mole fractions, 
liquid and gas, respectively)

Fig. 2.16
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The number of Components: the minimum number of independent 
species necessary to define the composition of all the phases present in 
the system.

E.g. the NaCl - water system. The number of the Na+ and the 
Cl- ions are not independent. Because of electroneutrality 
their numbers must be equal.

We will see latter that when the NaCl=Na+ + Cl-  reaction is in 

equilibrium than                                                               NaCl
i

=Na+
i

+Cl-
i

Na+
i

=Na+
j

Cl-
i
=Cl-

j
NaCl

i
=NaCl

j
As the concentration of ions are equal

NaCl – water system has two components. 
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The number of Components: the minimum number of independent 
species necessary to define the composition of all the phases present in 
the system.

The CaCO3 ,CaO, CO2  system has two components, too.
Three chemical substances but one reaction between them:
                          

CaCO3

i
=CaCO

i
+CO2

i
CaCO3 = CaO + CO2

 CaCO3 ,CaO, CO2 system has two components. 
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2.12 Equation of state for real gases2.12 Equation of state for real gases

Ideal gas, see subsection 1.4 :
1. No interaction between molecules 
    (the potential energy of interaction is 0).
2. The molecules are mass points.

     We study in this subsection the real gas equations: 
the van der Waals and the virial equations of state.
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0

Epot

r

attraction

repulsion low pressure

The potential energy between two molecules as the 
function of distance r (see also the similar figure 1.11)

energy minimum

Fig. 2.17
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The van der Waals equation of state

     Van der Waals modified the ideal gas law with two 
constants in order to include the molecules’ own sizes and 
the (attractive) interactions. 

Ideal gas:
mV

RT
p 

Becauese of the size of the 
molecules the volume 
available for motion is smaller: 
negative correction of  Vm .

bV

RT
p

m 
 (2.61a)
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     Because of attractive forces molecule pairs are formed 
temporarily (decreasing the pressure). If it is an equilibrium 
reaction:

(M+M=M2) [M2]= K·[M]2

     The decrease of  pressure is proportional to the 
concentration. The concentration is the reciprocal of the 
molar volume. Summarizing the 2.61 equations

2

mm V

a

bV

RT
p 




  RTbV
V

a
p m

m











2

(Vm = V/n):

(2.61b)

Rearranging we have the van der Waals equation

(2.62)



7474

TRb
n

V

V

na
p 
















 


2

2

      The van der Waals equation is cubic for V.
That means, in a certain range three different 
volumes belong to one pressure. – These parts of 
the isotherms have no physical reality, see Fig. 2.18.

  TRnbnV
V

na
p 







 


2

2

Other forms of the van der Waals equation:

(2.63a)

(2.63b)
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Fig. 2.18: Van der Waals isotherms

C C: critical point

liquid vapor

p

V

t1 t2

t3

t4

p

V

t1 t2

t3

t4

t3: critical temp.
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     Advantage of the van der Waals equation: it has 
two constants only. It is simple in comparison of a lot of 
other types of  real gas equations.

    Disadvantage: it is not accurate enough.
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Virial equation of state

...
)()()(

1
32


mmm

m

V

TD

V

TC

V

TB

RT

pV

second
third fourth

virial 
coefficient

    This virial equation of state it is basically a power 
series of the concentration (1/Vm ) Substituting V/n for Vm:

...
)()()(

1
3

3

2

2











V

TDn

V

TCn

V

TBn

nRT

pV

(2.64)

(2.65)
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2.13 2.13 The principle of corresponding statesThe principle of corresponding states

     The deviation from the ideal gas law can be expressed 
with the compressibility factor: 

RT

pV
z m

z = 1        ideal gas

z > 1       less compressible - repulsive forces dominate. 
                   (high pressures, high temperatures)

z < 1       more compressible - attractive forces dominate. 
                   (intermediate pressures, low temperatures)

(2.66)
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    The behaviour of real gases is found very 
similar if their properties are studied as functions 
of reduced pressure (the pressure divided by the 
critical pressure) and reduced temperature (the 
temperature divided by the critical temperature).

z = z(p,T, material)

C

m

CC V
V

T
T

p
p



(2.67)

reduced pressure  reduced temperature  reduced volume 

(2.68)
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     Law of corresponding states: if two reduced 
parameters of two different gases are equal then the third 
ones are equal, too.

    That means if A = B and   A =  B then A = B  

     In this case the two gases are in “corresponding state”. 
Their compressibility factors are nearly the same.

    If the reduced pressures and reduced temperatures of 
two gases are the same (i.e. they are in corresponding 
state) then their compressibility factors are the same, too.

     Therefore if A = B and   A =  B then zA = zB  

    This is not a strict law, rather an empirical rule for 
practical use.
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       We can plot a general reduced compressibility 
diagram valid for all the gases (see Figs. 2.19a anb).

Fig. 2.19a



Fig. 2.19b
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     Near =0 each curve approaches z=1 (ideal gas).

    There exist two types of problems:
A) p and T are known and Vm has to be determined.

z

0 

1.  = T/TC , we select the 
corresponding isotherm.

2.  At  = p/pC we read z 
(Fig. 2.20)

z


Fig. 2.20

(2.69)
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B) Vm and T are known, p has to be determined.

z

0 

     Both p and z are unknown. Applying the definition 
of  (2.68)


RT

Vp

RT

pV
z mCm

     Linear equation, 
slope (Fig. 2.21) z/

z



RT

Vp mCαtan

α

(2.70)

Fig. 2.21
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     Where the straight line crosses the corresponding 
isotherm, we can read both z and , since

m

C

V

zRT
p

orpp



 
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2.14 The Joule-Thomson effect2.14 The Joule-Thomson effect

In industry it is frequently applied the expansion of gases 
through throttles.

For example, in chemical works high pressure steam network 
are used often. On the site of application the reduced 
pressure is needed.

If high pressure gases are expanded adiabatically through a 
throttle, the temperature usually changes. Most frequently the 
temperature drops. (This is the basis of liquefying gases.)
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Production of dry ice in a lab.

valve

reductor
cotton bag

CO2 
cylinder

     The expanding gas cools down so 
that a part of it gets frozen. The 
pressure of triple point is higher than 
atmospheric pressure, therefore CO2 

does not exist in liquid state on 
atmospheric pressure (see subsection 
2.14)

Fig. 2.22

CO2 (dry) snow
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The experiment of Joule and Thomson

P1, T1 P2, T2

system

porous plug 
(throttle)

insulation

piston piston

Fig. 2.23
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U = Q + W + Hin - Hout

Steady state:  U = 0 Adiabatic:  Q = 0 

No work done in the throttle:  W = 0 H = 0

     B) We apply the first law for the whole system including 
the cylinders, the gas and the pistons. This is regarded as a 
closed system (follow Fig. 2.23).

U = W +Q Adiabatic:  Q = 0 

Initial state (state 1), all the gas is in the left hand side 

Final state (state 2), all the gas is in the right hand side 

    A) We apply the first law for the throttle as an open 
system (subsection 1.12)

(1.52)
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Therefore     U = W

and the work is    U2 – U1 = p1V1 – p2V2

Namely, in the left hand side work is done on the 
system, in the right hand side work is done by the 
system. 

H = 0

Therefore if a gas gets through a throttle adiabatically, its 
enthalpy does not change.

How does the temperature change?

In case of an ideal gas T does not change. (Enthalpy 
depends on T only, if H does not change, T does not change 
either).

U2 + p2V2 = U1 + p1V1     i.e. H2  = H1 

(2.71)
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     JT can be positive, zero and negative

JT >0: the gas cools down (dp is always negatíve)

JT <0: the gas warms up

JT=0: the temperature does not change 
   This is possible since there are certain temperatures and 
pressures  for real gases, too, where we cannot find a 
temperature change when performing the Joule-Thomson 
experiment.

For real gas:  We define the Joule-Thomson coefficient:

lim
Δp→0 (

ΔT
Δp )

H
=(

∂T
∂ p )

H
(2.72)
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     This statements can clearly understandable on a p-T 
diagram (Fig. 2.24). 

p

T

JT > 0 
(cooling)

JT = 0 
inversion
      curve

JT < 0 
(warming)

Fig. 2.24
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