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4. Advanced chemical 
thermodynamics



4.0 COLLIGATIVE PROPERTIES

Vapor pressure lowering: Subsection 4.1
Boiling point elevation: Subsection 4.1
Freezing point depression: Subsection 4.2
 Osmotic pressure:  Subsection 4.3

In dilute mixtures these quantities 
depend on the number and not the 
properties of the dissolved particles. 

Colligative = depending on quantity
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4.1.Vapor pressure lowering and boiling 
point elevation of dilute liquid mixtures

0 

p

x2  1 

t = const.

In a dilute solution Raoult´s 
law is valid for the solvent 
(See subsection 3.5)

pos. deviation

ideal

neg. deviation

Fig. 4.1
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Vapor pressure lowering (if component 2 is non-volatile)
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(4.1) gives the relative vapor pressure lowering, see 
also (3.22)

(4.1)
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Fig. 4.2: p-T diagram of the solvent and  the solution 
(see also Fig. 2.4), Tf freezing point lowering, Tb 

boiling point elevation
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     Have a look on Fig. 4.2! There are compared 
the solvent (black curve) and the solution (red 
curve) properties in a p-T diagram. 

     The vapor pressure decreases in comparison 
of the p-T diagrams of the solvent and the 
solution. At a constant T’ temperature the p*-p is 
observable. 

     The boiling point increases (Tb). On the 
figure you can see it at atmospheric pressure.  

     In contrary to the behavor of the boiling 
point the freezing point decreases as effect of 
the solving (Tf). 
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functions

Dilute solution is ideal for 
the solvent
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Understanding the boiling point elevation based on 
equivalence of the chemical potentials in equlibrium:

)()( 11 lg  

(3.24)

(4.2)
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This is the Gibbs-Helmholtz equation, see (3.52).
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     Assume that the molar heat of vaporization is 
independent of temperature, and integrate from the 
boiling point of the pure component (Tb) to T.
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Substitute the mole fraction of the solute: x1 = 1-x2

     Take the power series of ln(1-x2), and ignore the 
higher terms since they are negligible (x2<<1)
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       In dilute liquid solutions molality (m = mol solute per 
kg solvent) or concentration (molarity) (c = mol solute 
per dm3 solution) are used (instead of mole fraction).

(4.5)
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m2: molality of solute
M1: molar mass of solvent
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Includes the parameters of 
the solvent only: Kb
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Kb: molal boiling point elevation

With this

(4.6)

(4.7)

n1=
massof solvent

M 1
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Kb(water) = 0.51 K·kg/mol

Kb(benzene) = 2.53 K·kg/mol

Application: determination of molar mass
                    determination of degree of dissociation 

     These measurements are possible since the 
boiling point elevation depends on the number of 
dissolved particles.

Examples:
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4.2.Freezing point depression of dilute 
solutions
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The equation of the freezing point curve in dilute 
solutions has the following form (see equation 3.53):

x1: mole fraction of solvent
Hm(fus): molar heat of fusion of solvent 
T0: freezing point (melting point) of pure solvent
T: freezing point of solution

(4.8)
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We have from  (4.8)                   
         

(4.9)

And so we have from (4.9) 

(4.10)

The  freezing point depression is

(4.11)
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Since     x2  m2M1, we have

2
1

2
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fusH
MRT

T
m


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

2mKT f  Kf is molal freezing 
point depression

Kf(water) = 1.83 K·kg/mol

Kf(benzene) = 5.12 K·kg/mol

Kf(camphor) = 40 K·kg/mol

(4.12)

This multipier (Kf) contains 
solvent parameters only, 

(4.13)

The following examples are given in molality units

Molality unit: moles 
solute pro 1 kg solvent



17

Osmosis: two solutions of the same substance with 
different concentrations are separated by a semi-
permeable membrane (a membrane permeable for 
the solvent but not for the solute). 

Then the solvent starts to go through the 
membrane from the more dilute solution 
towards the more concentrated solution.   

Why ?

Because the chemical potential of the solvent is 
greater in the more dilute solution.

The „more dilute” solution may be a pure solvent, 
component 1.

4.3. Osmotic pressure
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1*(p) 
(solvent)

p



1(x1,p+) 

           membrane

The effect of osmotic pressure is illustrated on Fig. 4.3.

Fig. 4.3



19

     If the more concentrated solution cannot expand 
freely, its pressure increases, increasing the chemical 
potential.
     Sooner or later an equilibrium is attained. (The 
chemical potential of the solvent is equal in the two 
solutions.) 

     The measured pressure difference between the two 
sides of the semipermeable membrane is called 
osmotic pressure ().

What does osmotic pressure depend on?

   van´t Hoff found (1885) for dilute solutions 
(solute:component 2) V = n2RT

 = c2RT
(4.14) is similar to the ideal 
gas law, see equ. (1.27)

(4.14)

 (4.15)
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Interpretation of Fig. 4.3.
The condition for equilibrium is

μ1
* ( p )=μ1( p+π , x2 )

The right hand side is the sum of a pressure dependent 
and a mole fraction dependent term:

μ1
* ( p )=μ1

*( p+π )+Δμ1 ( x1 )

The chemical potential of a pure substance (molar Gibbs 
function) depends on pressure

μ1
* ( p )=μ1

*( p )+(
∂ μ1

∂ p )T π+Δμ1( x1 )

(4.16)

(4.17)
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     V1 is the partial molar volume (see equ. 3.5). Its 
pressure dependence can be neglected. (The volume 
of a liquid only slightly changes with pressure), so the 
integral is only V1. So we have

For  1

T
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


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0 = V1 +1(x1) 

1(x1) = -V1 

This equation is good both for ideal and for real 
solutions. Measuring the osmotic pressure we can 
determine  (and the activity).

see (2.19b)

Rearranged (4.18)



22

In an ideal solution:   1(x1) = RTlnx1    (3.24)

For dilute solution: -lnx1 = -ln(1-x2)  x2 

V1 = -RTlnx1  RTx2

21
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In a dilute solution
 a) n2 can be neglected beside n1 
 b) V1 approaches the molar volume of the pure solvent
 c) the contribution of solute to the total volume can be
            neglected (                     ). VnVm  1

*

1

(4.19)
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2n
V

RT


RTnV 2

With this restrictions the result is the van’t Hoff 
equation for the osmotic pressure, in forms 

(4.20a)

(4.20b)

The osmotic pressure is an important 
phenomenon in living organisms. Think on the 
cell – cell membrane – intercellular solution 
systems. 
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4.4 Enthalpy of mixing

Mixing is usually accompanied by change of energy.

  Heat of mixing (Q) = enthalpy of mixing

Mixing processes are studied at constant pressure.

)( *
22

*
11 mmmixs HnHnHHQ 

)( *
22

*
11 mmmmmixms HxHxHHQ 

21 nn

H
Hm


 (molar enthalpy of solution)

At constant pressure and constant temperature

(4.21a)

(4.21b)
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    Molar heat of mixing  (called also integral heat of 
solution, and molar enthalpy of mixing)

     is the enthalpy change when 1 mol solution is 
produced from the components

     at constant temperature and pressure.

In case of ideal solutions the enthalpy is additive, Qms= 
0, if there is no change of state.

In real solutions Qms  (molar heat of fusion) is not 
zero.  The next figures present the deviations 
from the ideal behavior.
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     Real solution with positive deviation (the attractive 
forces between unlike molecules are smaller than 
those between the like molecules).

Qms  > 0   In an isothermal process we must add heat.

                   In an adiabatic process the mixture cooles down.

x2 
0 1

Qms Endothermic 
process, see 
section 3.1.

Fig. 4.4
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     Real solution with negative deviation (the 
attractive forces between unlike molecules are 
greater than those between the like molecules).

Qms  < 0     In an isothermal process we must distract heat.
                  In an adiabatic process the mixture warmes up.

x2 
0 1

Qms

Exothermic 
process, see 
section 3.1.

Fig. 4.5.
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     Differential heat of solution is the heat exchange 
when one mole of component is added to infinite 
amount of solution at constant temperature and 
pressure. 
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     Therefore the differential heat of solution is  the 
partial molar heat of solution:

(4.22)
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0 1

Qms

     The determination of the differencial heats of 
solution is possible  e.g. with the method of 
intercepts, Fig. 4.6  (see also e.g. Fig. 3.8):

x2 

Qm1

Qm2

Fig. 4.6
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The differencial heat of solution is equal to the partial 
molar enthalpy minus the enthalpy of pure component.

     Enthalpy diagrams: the enthalpy of solution is 
plotted as the function of composition at different 
temperatures. These diagrams can be used for the 
calculation of the heat effects of the solutions. 

Explanation to Fig. 4.6. [Like (3.2)]:
Differentiating with 
respect to the amount:

(4.23)
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Fig. 4.7 is a model of  a solution enthalpy diagram, the 
ethanol - water system. Technical units are used! 

wet 

h (kJ/kg)

300

0
0 oC

50 oC

80 oC

0 1

Fig. 4.7

Compare Fig. 4.7 
with Fig. 3.2!

(w: weight fraction)
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    Isothermal mixing: we are on the same isotherm 
before and after mixing.(see Fig. 4.8). According to 
(3.2) we have

Qs = (m1+m2)h - (m1h1+m2h2)

h, h1, h2 can be read from the diagram, using 
the tangent.

Adiabatic mixing: the point corresponding to the 
solution is on the straight line connecting the two initial 
states (see Fig. 4.9). Abbreviatons to the figure:

the mole fraction of the selected component is denoted 
by x, A an B are the initial solutions: xA, HmA xB, HmB, 
nA = n – nB.

(4.24)



33

Hm

x 
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Material balance:
(n-nB)xA+nBxB = nx      and

(n-nB)HmA+nBHmB = nHm

nB(HmB-HmA) = n(Hm-HmA)

nB(xB - xA) = n(x - xA)

A

mAm

AB

mAmB

xx

HH

xx

HH










(4.25) is a linear equation

Hm

x Fig. 4.9

(4.25)

Rearranging these equations:

Dividing these equations by 
one another
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     This is a straight line crossing the points (x1,y1) and 
(x2,y2) like the algebraic equation
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At last we have

(4.26)
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4.5 Henry’s law

     In a very dilute solution every dissolved molecule 
is surrounded by solvent molecules:

  If a further solute molecule is put into the solution, it will 
also be surrounded by solvent molecules. It will get into 
the same molecular environment. So the vapor pressure 
and other macroscopic properties will be proportional to 
the mole fraction of the solute: Henry’s law. 

Fig. 4.10
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Henry’s law is valid for low mole fractions. Fig 4.11,  observe 
deviations!

xB   0 1
A B

pA*

pB*

t = const.p

pA

pB

Henry

Raoult

Raoult

Henry

Fig. 4.11
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Where component B is the solute, the left hand 
side of Fig. 4.11):

pB=kH⋅x B
kH is the Henry constant

In the same range the Raoult´s law applies to the 
solvent: pA=p A

*
⋅x A

The two equations are similar. There is a difference 
in the constants. pA* has an exact physical meaning 
(the vapor pressure of pure substance) while  kH 
does not have any exact meaning.

In a dilute solution the Raoult´s law is valid for the 
solvent and Henry´s law is valid for the solute.

(4.27)

like (3.18)
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4.6 Solubility of gases

The solution of gases in liquids are generally dilute, 
so we can use Henry´s law.

The partial pressure of the gas above the solution is 
proportional to the mole fraction in the liquid phase.

Usually the mole fraction (or other parameter 
expressing the composition) is plotted against the 
pressure. If Henry´s law applies, this function is a 
straight line. See e.g. the solubilty of some gases on 
Fig. 4.12!



39

0.01

O2

400 p [bar]

x

H2

N2

The solubility of some 
gases in water at 25 oC

Fig. 4.12
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In case of  N2 and H2 the function is linear up to 
several hundred bars (Henry´s law applies), in 
case of O2 the function is not linear even below  
100 bar.

Temperature dependence of solubility of gases 

Le Chatelier´s principle: a system in equilibrium, 
when subjected to a perturbation, responds in a way 
that tends to minimize its effect.

Solution of a gas is a change of state: gas  liquid. 
It is usually an exothermic process.
Increase of temperature: the equilibrium is shifted 
towards the endothermic direction  desorption.
The solubility of gases usually decreases with 
increasing the temperature.

Absorption - desorption
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4.7 Thermodynamic stability of 
solutions

One requirement for the stability is the negative 
Gibbs function of mixing.

The negative Gibbs function of mixing does not 
necessary mean solubility (see Fig. 4.13d diagram of 
the next figure).

Other requirement: The second derivative of the Gibbs 
free energy of mixing with respect to composition must 
be positive.
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0

mGm

x2 

0

mGm

x2 

0

mGm

x2 

0

mGm

x2 

Complete 
miscibility

Complete 
immiscibility

Partial 
solubility

Partial 
miscibility

  Some examples of the dependence of molar Gibbs 
free energy as a function of mole fraction

Fig. 4.13a Fig. 4.13b Fig. 4.13c Fig. 4.13d
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The conditions for stability:

0 mmixG1.

0
,

2

2


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






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pT

mmix

x

G
2.

Partial miscibility (diagram 4.13d). 

Chemical potential: partial molar Gibbs function.

Remember! Partial molar quantity of Gibbs function 

of mixing is the change of chemical potential when 

mixing takes place:  1 , 2. The chemical 

potential of a component must be the same in the 

two phases. 

(4.28)

(4.29)
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Partial miscibility. At the marked points the second 
derivative changes it sign from negative to positive, 
according to the requirements of (4.29).

Phase rich in 2 Phase rich in 1

1

2

Fig. 4.14
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The common tangent of the two curves produces  
and   (method of intercepts). Fig. 4.14.

1 must be the same in the phase rich in 1 as in 
the phase rich in 2 according to ther requirement of 
equilibrium. The same applies to .
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4.8. Liquid - liquid phase equilibria

         The mutual solubility depends on temperature.
        In most cases the solubility increases with 
   increasing temperature.

n-hexane nitrobenzene

0

t [oC]

20
1 phase

     2
phases

tuc

tuc : upper critical 
solution temperature

u: upper
In this case the formed 
complex decomposes at 
higher temperatures.

Fig. 4.15
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Sometimes the mutual solubility increases with 
decreasing temperature.

water triethyl-amine

20

t [oC]

60

 1 phase

2 phases

tlc

tlc : lower critical solution 
temperature

l: lower

   Solubility is better at low 
temperature  because they 
form a weak complex,  
which decomposes at 
higher temperatures.

Fig. 4.16
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In a special case there are both upper and lower 
critical solution temperatures.

Low t:  weak complexes
Higher t: they decompose

At even higher 
temperatures the thermal 
motion homogenizes the 
system.

water nicotine

60

t [oC]

200

 2 phases

1 phase

tlc

tuc

1 phase

x

Fig, 4.17
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4.9 Distribution equilibria

We discuss the case when a solute is distributed 
between two solvents, which are immiscible.

In equilibrium the chemical potential of the solute is 
equal in the two solvents (A and B).

A
i

B
i  

   The chemical potential can be expressed as

iii aRT ln0 

(4.30)

See (3.25)
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The activity can be expressed in terms of 
concentration:

3/1 dmmol

c
a i

i
c

i 

See later: “4.11 Activities and standard states” 

In this case (when the activites are expressed 
through the concentration) the standard chemical 
potential depends on the solvent, too.

A

i

A

i

B

i

B

i aRTaRT lnln 00  

(4.31)

(4.32)

Solvent dependent quantities!!!
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The quantities on the right hand side depend on 
temperature only (i.e. they do not depend on 
composition).
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K: distribution constant (depends on T only). 

In case of dilute solutions (Henry range) we can use 
concentrations instead of activities.

Kc: distribution constant in terms of concentration

C
a

a
A
i

B
i ln K

a

a
A
i

B
i 

cA
i

B
i K

c

c


(4.33)

(4.34)
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     Processes based on distribution are called 
extraction.

Calculation of the efficiency of extraction in a lab

V´   
      
   V    

      
   

C0  C1

0  C1’

   We assume that the 
solutions are dilute and their 
volume does not change 
during extraction. (The two 
solvents do not dissolve each 
other at all: Fig. 4.18).

Fig. 4.18
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Material balance for the component to be extracted:
''

110 VcVcVc 

'

110 VKcVcVc c

c1 is the concentration in the mother liquor after the 
first extraction step.

cK
c

c


1

'
1

V
V

K
VKV

V

c

c

c
c

'
0

1

1

1

'







V

VK
Q c 


Qc

c




1

1

0

1

Extraction coefficient:

(4.35)

(4.36)

(4.37)
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   Repeating the extraction with the same amount of 
solvent:

''

221 VcVcVc    Similar derivation as before:

Qc

c




1

1

1

2
Multiply this formula and the 
previous one:

2

0

2

1

1












Qc

c If we use N steps with the 
same amount of solvent:

N

N

Qc

c












1

1

0

(4.38)
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4.10 Three component phase diagrams

  Triangular coordinates are used for phase 
diagrams of three component systems.

  Phase rule: F = C – P + 2 = 5 – P  - may be four.
If p and T are kept constant, two degrees of freedom 
still remain: two mole fractions    (xC = 1 - xA – xB).

   An equilateral triangle is suitable for representing 
the whole mole fraction range.
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A B

C

Each composition corresponds to one point.

E.g. xA = 0.2,   xB = 0.5

xA

0.2

xB 0.5

   The point 
representing the 
composition is the 
crossing point of 
the two lines

xC

We draw a parallel 
line with the line 
opposite the apex 
of the substance.

Fig. 4.19
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A B

C

Reading the composition

xA

xB

Where the broken 
lines cross the 
axes, we read the 
mole fractions.

xC

We draw parallel 
lines with the lines 
opposite the apexes 
of the corresponding 
substances.

P

E.g. read the composition 
corresponding to point P

Fig. 4.20
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A B

C

P

1 phase

2 phas.

A and  B are only partially miscible but both are 
completely miscible with C.

The lines show 
the composition of 
the two phases in 
those are in 
equilibrium

P: isothermal critical point

Fig. 4.21
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A B

C

1 phas.

2 phas.

2 phas.

a)

A and B are completely miscible but both are 
partially miscible with C.

Fig. 4.22
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A B

C

1 phas.

2 phas.

1 phas.

b)

A and B are completely miscible but both are 
partially miscible with C.

Fig. 4.23
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A B

C

1 phas.

2 phas.

2 phas.

2 phas.

All the three components are partially miscible 
with one of them

a)

Fig. 4.24



63

A B

C

1 phas.

2 phas.

2 phas.

2 phas.

All the three components are partially miscible

b)
3 phas.

1 phas.

1 phas.

Fig. 4.25
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4.11 Activities and standard states

Expression for the chemical potential:

iii aRT ln0 

Standard chemical 
potential

activity ( always dimensionless)

1.) Ideal gases (partial pressure per 
standard pressure) 

Standard state: p0 pressure
                          ideal behavior

0p

p
a i

i 

(see 3.25)
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2.) Real gases ( see subsection 3.7)

Ideal solution of real gases: the interaction 
between molecules cannot be neglected but the 
same interactions are assumed between unlike 
molecules as between like molecules.

0p

f
a i

i 
partial fugacity per 
standard pressure, 
see (3.28)

Lewis – Randall rule: pyf iii 

fugacity 
coefficient mole 

fraction

total 
pressure

(4.39)

(4.40)
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Standard stateStandard state::    p  1 bar
y i  1
 i  1
fi  1 bar

The ideal gas state at p0 pressure (fugacity) is a 
fictive state. The standard chemical potential is the 
chemical pot. of the ideal gas at standard pressure.

0
0

0
0 lnln

p

py
RT

p

f
RT ii

i
i

ii


  (4.41)

Expression of the chemical potential for real 
gases according to (4.40) 
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3.) Solutions1: the component is regarded as solvent.
    Raoult´s law is applied.

μi=μ1
*+RT ln ai=μ1

*+RT ln (
x
 i x i )

Standard state xi  1
xi  1
ai  xi

This defines the pure liquid at p0 pressure

(4.42)
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4.) Solutions2: the component is regarded as solute.
    Henry´s law is applied. The composition is expressed
    in terms of concentration or molality.

A) concentration, c (mol/dm3) is applied

μi=μi
0+RT ln ai=μi

0+RT ln( c  i
c i

c0 )
a i=

c  i⋅
c i

c0

ci: activity coefficient applied to concentration

c0: unit concentration (1 mol/dm3)

(4.43)
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We cannot choose the infinite dilute solution as
standard state  because as ai approaches 0, its 
logaritm approaches -.

The standard state is a state where the activity is 1.
ci   1 mol/dm3

ci  1
ai   ci /c0

This is a hypotetical (fictive) state.

This is a hypotetical (fictive) standard state : unit 
concentration but such behaviour as if the solution 
was  dilute.
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B) molality (mi, mol solute / kg solvent)











0
00 lnln

m

m
RTaRT i

i
m

iiii 

: activity coefficient applied to molality

m0: unit molality (1 mol/kg)

The standard state is fictive since unit molality and 
ideal behavior should be required.

(4.44)

i
m
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4.12 The thermodynamic equilibrium 
constant

Chemical affinity  is the electronic property by which 
dissimilar chemical species are capable of forming chemical 
compounds.                                                                       
The following considerations are applied.

    1.) In equilibrium  at a given temperature and pressure
     the Gibbs function of the system has a minimum. 
    2.)The Gibbs function can be expressed in terms of
     chemical potentials:      G = ni i

    3.) The chemical potentials depend on the composition
     (i = i

0 + RT ln ai).   In a reaction mixture there is
     one composition, where the Gibbs function has its
     minimum. This is the equilibrium composition.
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Qualitative discussion                                               
Three cases are shown below

G

reactants products

a

b

c

Fig. 4.26
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a) The equilibrium lies close to pure products. The 
reaction „goes to completion”.

b) Equilibrium corresponds to reactants and 
products present in similar proportions.

c) Equilibrium lies close to pure reactants. The 
reaction „does not go”.

Conclutions:
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Quantitative discussion

Three cases depending on composition:

1)

The reaction can go from left to right when G 
decreases.

322

BBAA

NH2H3N

MM

    e.g. 

     



  (4.45)

32 NHH

BBA

23 







2N

A

  e.g. 

      (4.46)
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2)

The reaction can go from right to left.

3)

Equilibrium :  0  - AB   AB

0Grr Reaction Gibbs function:

032G
223 HNNHr      e.g.

32 NHH

BBA

23 







2N

A

  e.g. 

   (4.47)

32 NHH

BBA

23 







2N

A

  e.g.

       (4.48)

(4.49)

(4.50)
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iii aRT ln0 

    0lnln 00  AAAABBBB aRTaRT 

  0lnln00  AB
ABAABB aaRT 

Sum of logarithms  = logarithm of the product
Difference of logarithms  = logarithm of the ratio
Constant times logarithm = logarithm of the power

0ln00 





A

B

A

B
AABB a

a
RT







Since

Rearranging

Now we have

(4.51)
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KRTGrr ln00  

standard reaction 
Gibbs function

A

B

A

B

a

a
K










3

2

22

3

HN

NH

aa

a
K 322 2  3  e.g.  NHHN 

The equilibrium constant K depends on temperature 
only.
K does not depend on either pressure or 
concentrations. (The concentrations  or partial 
pressures take up values to fulfil the constancy of K).

As result

The equilibrium constant is

(4.52)

(4.53)



The equilibrium constant is a very important 
quantity in thermodynamics that characterizes 
several types of equilibria of chemical reactions: 

      in gas, liquid, and solid-liquid phases;

      in different types of reactions between 

      neutral and charged reactants;

The equlibrium constant can be expressed using 
several parameters like pressure, mole fraction, 
(chemical) concentration, molality.              
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4.13 Chemical equilibrium in gas phase

A

B

A

B

a

a
K










Ideal gases: 0p

p
a i

i 

A

B

p
p

p
p

A

B

K


























0

0

  







 BA

A

B

p
p

p
K

A

B 




0

  
 0pKK p

: change in number of molecules
e.g. SO2 + ½ O2 = SO3

 = 1 – 0.5 – 1 = - 0.5

Applications of

Therefore

(4.54)

and (4.55)

A

B

A

B
p p

p
K








 (4.56)

  AB 
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Kp is also constant because (p0)- is constant for a given 
reaction. The dimension of Kp is  pressure. 
E.g., Pa–1/2, bar–1/2  (for the previous reaction).
   

Real gases:
00 p

py

p

f
a iii

i


      (4.57)

  
  

  BA

AA

BB

p
py

py
K

AA

BB 







 





 0

Applying the Lewis-Randell rule

(4.58)

(4.57) is the Lewis-Randall rule (see also 3.28)
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 
 

  











 










 0p

py

py
K

A

B

A

B

A

B

A

B

Constant, depends 
on T only.  This is 
the “true” equilibrium 
constant.

They depend on 
pressure but their 
product does not.

or
(4.59)

Extending (4.55) for real gases:

(4.60)K=K p K  p0
− 

K 
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Example: 1/2 N2 + 3/2 H2 = NH3   at 450 0C

p(bar) K Kp·103

(bar)-1
K·103

10 0.995 6.6 6.6

30 0.975 6.8 6.6

50 0.95 6.9 6.6

100 0.89 7.3 6.5

300 0.70 8.9 6.2

Effect of fugacity coefficient is observed at high 
pressures.

E
rror due to the failure of 

the ideal m
ixture of real 

gases approx
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4.14 Effect of pressure on equilibrium

The equilibrium constant is independent of pressure. 
On the other hand, the equilibrium composition in a 
gas reaction can be influenced by the pressure.

Assume that the participants are ideal gases. 
According to (4.54a)

A

B

p

p

p
p

K
A

B



























0

0

Dalton´s law: pi = yi·p

We express K with gas 
mole fractions:
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






































0

0

0

p

p
K

p
py

p
py

K y

A

B

A

B

AB  

A

B

A

B
y y

y
K










Ky: reaction quotient expressed in gas mole fractions













0p

p
KK y

Ky is not constant if the number of molecules 
changes but it is dimensionless.

The effect of pressure on equilibrium composition 

depends on the sign of  .

(4.61) (4.62)

(4.63)

(4.64)
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   If   0 (the number of molecules increases), 
increasing the pressure, decreases Ky, that is, the 
equilibrium shifts towards the reactants (- is 
exponent!).

   If   0 (the number of molecules decreases), 
decreasing the pressure, favours the products  (Ky 
increases). 

Principle of Le Chatelier: a system at equilibrium, 
when subjected to a perturbation, responds in a 
way that tends to minimize its effect.

  Equilibrium gas reaction: Increasing the pressure, 
the equilibrium shifts towards the direction where 
the number of molecules decreases. 
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   Reactions where the volume decreases at constant  
pressure ( < 0) are to be performed at high pressure.

   Reactions where the volume increases at constant  
pressure ( > 0) are to be performed at low pressure 
or in presence of an inert gas.

For example
N2 + 3 H2 = 2NH3       = -2
Several hundred bars are used.
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4.15 Gas - solid chemical equilibrium

   Heterogeneous reaction: at least one of the 
reactants or products is in a different phase. 

   Gas - solid heterogeneous reactions are very 
important in industry.  For example:

   C(s) + CO2 (g) = 2 CO (g)
   CaCO3(s) = CaO (s) + CO2 (g) 
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   1. In most cases the solid substance does not have 
any measurable vapor pressure. The reaction takes 
place on the surface of the solid phase.

   We derive the equilibrium constant in the same way as 
before but we consider the differences in the expression 
of chemical potential of gas and solid substances.

   The gas components are assumed ideal gases.

0
0 ln)()(

p

p
RTgg i

ii  )()( 00 gGg mii 

       

      0



sss

ggggG

AABB

AABBr




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The solid components are pure solids, their 
concentration does not change:   i(s) = Gmi(s)

Assume that the molar Gibbs function of a solid does 
not depend on pressure. 

 Pressure dependence of G  

   dG = Vdp – SdT   (see 2.19a)

(
∂Gm

∂ p )
T
=V m

In case of solids the molar volume (Vm) is small
E.g., C(graphite):

Vm=
12g /mol
2 .25g /cm3=5 .33 cm3 /mol=5 .33⋅10−6 m3/mol

(see 2.19b)
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   For such kind solid components we neglect the 
pressure dependence of , and we take the chemical 
potential equal to the molar Gibbs function of pure 
substance: 

    KRTGgGsG rrr ln000 

ΣνB (s )GmB
0

(s )−Σν A (s )GmA
0

( s )+ΣνB (g )GmB
0

(g )−

−ΣνA (g )GmA
0

(g )+RT ln
Π (

pB

p0 )
νB ( g)

Π (
p A

p0 )
νA ( g )

=0

μi (s )=Gmi
*

(s )

(4.65)
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   So the following rules are used in case of gas - solid 
heterogeneous reactions:
   a) For the calculation of rG0 (change of Gibbs free 
energy during the reaction) the standard molar Gibbs 
functions of all the participants have to be taken into 
account.
   b) Only the partial pressures of the gas components 
are included in the equilibrium constant.

Example reaction:                
  C(s) + CO2 (g) = 2 CO (g)

     2
0000 2 COGCGCOGG mmmr 




























0

2

0

2

p

p

p

p

K
CO

CO

The change of the Gibbs 
function in the reaction:
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     2. If a solid component has a measurable vapor 
pressure

Example: H2(g) + I2 (s,g) = 2 HI(g) 
The iodine is present both in the solid and the gas phase 
(it sublimates)

  a) We regard the reaction as homogeneous gas 
reaction.









































00

2

0

22

p

p

p

p

p

p

K
IH

HI

This is also constant (the 
vapor pressure of solid iodine), 
so it can be merged into K.

In the vapor phase the partial 
pressure of iodine is constant 
as long as solid iodine is 
present in the system.

=0
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b) We regard the reaction as heterogeneous.





















0

2

0

2

´

p

p
p
p

K
H

HI

   Both methods lead to the same result. 
   For the calculation of K, the standard chemical 
potential of gaseous iodine is used. 
   For the calculation of K´, the standard chemical 
potential of solid iodine is used. 

  Therefore the iodine as solid 
component is left out from the 
equilibrium constant. 
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4.16 Chemical equilibria in liquid state

We study three cases.

1.The components are present in high concentration
    (e.g. reactions between organic liquids). 
    Such equilibrium reaction is the formation of esters. 
Equations (4.52) and (4.53):

KRTGr ln0  A

B

A

B

a

a
K










   The composition is expressed in terms of mole 
fraction.

ii
x

i xa  
A

B

A

B

a

a
K










xKKK  
(4.66a,b,c)
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In ideal solutions Kx = const.
In real solutions, too, Kx may be constant if the 
dependence of activity coefficients on mole 
fraction is  not significant (K = const.).

  Example:
 CHCl2COOH + C5H10 = CHCl2COOC5H11  at 1000C
Dichloro acetic acid    pentene          ester

acidpentene

ester
x xx

x
K




Varying the acid - pentene molar ratio 
between 1 and 15, they obtained  Kx  2.25 .

(4.67)
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Formation of esters from acids and alcohols are 
typical equlibrium reactions:
R COOH + R’OH  = RCOOR’ + H2O

alcoholacid

waterester
x xx

xx
K






2. Reactions in solvents.

The solvent does not take part in the reaction. 
Gases and solids, too, can react in the liquid phase. 
The composition is expressed in terms of 
concentration, c  or molality, m.

(4.68)
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0
0 ln

c

c
RT ii

c

ii


 

if chemical concentrations  are used:

KRTr ln0  

  




 0cKKK c

A

B

A

B
c c

c
K










  BA

A

B

A

B

A

B

c
c

c

c

c

c

c

K
A

B

A

B

AA

BB




























 








 















0

0

0

(4.69)

(4.70)

(4.71)
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If molalities  are used :

0
0 ln

m

m
RT ii

m

ii


 

  




 0mKKK m

   In dilute solutions (c < 1 mol/L) Kc , or Km are 
practically constant if neutral molecules take part in 
the reaction.
   If ions also take part, the activity coefficients must 
be taken into account.

(4.72)

(4.73)
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3. Equilibrium in electrolytes.

     Even very dilute solutions cannot be regarded ideal 
(because of the strong electrostatic interaction between 
ions). Still Kc can be frequently used as equilibrium 
constant (it is assumed that the activity coefficients are 
independent of concentration, so K is taken constant).

Dissociation equilibrium

KA  =  K+ +  A-

K+: cation A-: anion

c0(1-)   c0· c0· c0 : initial concentration
 degree of dissociation








1
0

2c
Kc 0    1

(4.74)

(4.75)
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The degree of dissociation ) is the number of 
dissociated molecules per the number of all 
molecules (before dissociation).
 depends on concentration (it is higher in more dilute 
solutions)
Autoprotolytic equilibrium and ionic product of water 

H2O+H2O = H3O
+ +OH-

Kw = a(H3O
+)·a(OH-)

The activity of water is missing because it is in great 
excess, its concentration is practically constant, and 
can be merged into the equilibrium constant.

At 25 0C:  Kw  10-14

pH = -lg a(H3O
+) 

(4.76)

(4.77)
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Ionization equilibrium of acids

HA+H2O = H3O
+ +A-

)(

)()( 3

HAa

AaOHa
Ka

 


Ionization constant:

Its negative decimal logarithm is used:

pKa = - lgKa

    pKa characterizes the strength of the acid. 
Strong acids have small pKa,                                 
Examples:. for HF it is 3.17, for HNO3 it is -1.64. 

(4.78)

(4.79)

(4.80)
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Ionization equilibrium of bases

B+H2O = BH+ +OH-

)(

)()(

Ba

OHaBHa
Kb

 
The dissociation constant:

Ka is also frequently used for bases, stronger basis 
- higher pKa, it is for CH3NH2 10.64, for NH3 9.23.

The equilibrium: BH+ +H2O = B + H3O
+ 

)(

)()( 3


 


BHa

BaOHa
Ka

pKb = - lgKb

(4.81)

(4.82)
(4.83)

(4.84)

(4.85)

(4.86)
The product of the two constants is the ionic 
product of water: Ka·Kb = Kw
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4.17 Temperature dependence of the 
equilibrium constant

The following equation shows that the equilibrium 
constant depends on temperature only.

KRTGr ln0 

The standard chemical potentials depend on 
temperature only:

Derive lnK with respect to temperature

T

G

R
K r

01
ln


 









 










T

G

TRT

K r
01ln

(see 4.52)
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Derivation of the ratio of two functions

2

,
´´

v

uvvu

v

u 










 
222 T

H

T

GTS

T

G
T

G
T

T
T

G
p

p






































Gibbs-Helmholtz equation, (3.52).

     We apply this operation to rG0, that is we 
substitute the negative standard reaction 
enthalpy for the temperature derivative for the 
standard Gibbs function of reaction.

-S
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So the temperature dependence of equilibrium 
constant is given by the van’t Hoff equation

It is the standard reaction enthalpy that determines 
the temperature dependence of K.

The sign of dlnK/dT is the same as the sign of 
dK/dT (because dlnK/dT = 1/K· dK/dT).

In case of endothermic reactions (rH0 > 0) the 
right hand side is positive, so K and lnK increases 
with increasing temperature (see Fig. 4.27)

2

0ln

RT

H

dT

Kd r (4.87)
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In case of exothermic reactions (rH0 <0) K and lnK decrease 
with increasing temperature (see Fig. 4.27)

Principle of Le Chatelier: The equilibrium shifts towards the 
endothermic direction if the temperature is raised, and in the 
exothermic direction if the temperature is lowered, 
endothermic: heat is absorbed form the environment, 
exothermic: heat is transmitted to the environment. 

For exothermic reactions low temperature favours the 
equilibrium but at too low temperatures the rate of reaction 
becomes very low. We must find an optimum temperature. 

For exact integration of van´t Hoff equation we must know the 
temperature dependence of the standard enthalpy of reaction. 
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In a not too large temperature range the reaction 
enthalpy is assumed constant. Then integration is 
easy:  

.ln
0

const
RT

H
K r 




If we plot the logarithm of the equilibrium constant 
against the reciprocal of the absolute temperature, 
we optain a linear function. The slope is 
determined by the standard reaction enthalpy.

(4.88)
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Fig. 4.27 introduces the lnK - 1/T diagram for an 
endothermic (a) and for an exothermic (b) reaction

alnK

1/T

rH0 > 0

T increases

b

1/T

rH0 < 0

lnK

T increases

Fig. 4.27
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