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Chapter 2 
STRUCTURE AND PROPERTIES OF ATOMS 

 
2.1 Introduction 

A set of elementary particles, protons, neutrons and electrons build an atom.  The atom is a 
new quality.  

Our model in this chapter is the isolated atom, the atom that does not treat into interactions 
with its environment. This is, of course, an abstraction. It can be a good approach, if the 
interactions are weak. A low pressure gas is a good realisation of the isolated atom. 

 
2.2 The hydrogen atom 
 

The hydrogen atom is the simplest atom. Therefore we begin with it the study of the atoms. 
 
2.2.1 The structure of the hydrogen atom 
 
The description of the hydrogen atom with quantum mechanics is not very complicate. The 

solution of the Schrödinger equation 

  ψ=ψ EĤ  (2.1) 

is relatively easy. Here Ĥ  is the Hamilton (energy) operator, ψ is the eigenfunction (a wave 
function), E is the energy eigenvalue. This atom consists of two particles: a proton and an 
electron (Fig. 2.1).  

 

  

r

proton

electron

 
 

Fig. 2.1 
 

 
The calculations are simpler using polar coordinates (Fig. 2.2) instead of Cartesian ones. 

The polar coordinates are as follows: r is the radius, ϕ is the polar angle, θ  is the azimuthal 
angle. 

For the solution of Eq. 2.1 the following form is assumed: 

  ( ) ( ) ( )θϕ=θϕψ ,YrR,,r  (2.2) 

The Hamilton operator is the sum of the kinetic (T) and potential (V) energy operators: 
 
  V̂T̂Ĥ +=  (2.3) 
 
The V̂  acts simply by multiplication with the potential energy. 
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Fig. 2.2 
 

The potential energy of the charged system is 

  V e
ro

= −
1
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πε
 (2.3) 

 
e is the absolute value of the electron charge (1.602176×10-19As), ε0 is the permittivity of 
vacuum (8.85419×10-12AsV-1m-1). The kinetic energy operator is 

  ( ) p
p

2

,r
e

2

T̂
m2

T̂T̂
m2

T̂ hh
−+−= θϕ  (2.4) 

 
The first term is the kinetic energy of the electron (me is its mass, 9.10938 × 10-31kg) is 
divided into to parts: the r dependent one represents the translation, the second one the 
rotation; the second term is the kinetic energy operator of the proton (its mass is mp, 
1.67262×10-27kg).  

According to the Born-Oppenheimer approximation (adiabatic approximation) the 
movement of the electron is much faster than that of the proton (take into account the mass 
rate: mp/me ≈ 1850). Therefore the proton can be regarded as a particle fixed in space and 
therefore second term of Eq. 2.4 is negligible. 

Substituting Eqs. 2.2, 2.3 and 2.4 into Eq. 2.1 we have 
 

 

( ) ( ) ( ) ( )[ ] ( ) ( )θϕ=θϕ−
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
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The r depending and  the ϕ and θ  dpending parts of this equation are separable: 
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The first step of the solution of such kind differential equations is easy. If the variables 
are separated, both sides of Eq. 2.6 are equal to the same constant. However, the solution of 
these differential equations is complicate. The solution of Eq. 2.5 results the energy 
eigenvalues  

 2
H

22
o

e
4

n n
R

hc
n32

me
E −=

πε
−=

h
 (2.7) 

 
i.e. the electron energy is quantized, it depend on the quantum number n, the principal 
quantum number. The quantization of the energy means, that only their discrete values are 
allowed, these are called energy levels.  RH is the Rydberg constant for hydrogen atom 
(109737 cm-1). 

The eigenfunctions of Eq. 2.5, called also orbitals, are complicate: 
 

  ( ) ( )θϕ







=ψ ,Y
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r2R
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1Nm,l,n m
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l
nml,n,  (2.8)  

with the Bohr radius  
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Nn,l,m is a normalization factor to fulfil the request the normalization to 1: 

 
  1d* =τψψ∫  (2.10) 
 

The functions R and Y are found in Table 2.1. 
The quantum numbers n, l and m are 
 
n principle quantum number n= 1,2,3,... , all positive integers  
l angular moment quantum number l= 0,1,2,...,n-1 
m magnetic quantum number -l,-l+1,...,0,...,l-1,l   
 
The electron states (orbitals) of the hydrogen atom are degenerated: the same energy 

belongs to several eigenfunctions, since only the principal quantum number determines the 
energy.  

Electron orbitals with the same n build an electron shell, orbitals with the same n and l 
build a subshell. Shells are labelled with capitals: 

 
 n = 1 2 3 4 5 6 etc.  
 label K L M N O P etc. 
 
Subshells are labelled by (some special) small letters: 
 
 l = 0 1 2 3 4 5 etc. 
 label s p d f g h etc. 
 

There exist a special angular moment of the electron, form its nature, the spin (see Chapter 1).  
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If the principal quantum number of a shell is n, the possible maximal number of electrons 
on this shell is 2n2. 

 
Table 2.1 
Eigenfunctions (orbitals) of the hydrogen atom 

 

n l m factor r function θ function ϕ 
function 

alternative  
ϕ function 

orbital 
name   

1 0 0 R1    1s 
2 0 0 √2 R2 (2-ρ)    2s 
2 1 0 √2 R2 ρ cosθ   2pz 
2 1 +1 R2 ρ sinθ exp(+iϕ) cosϕ 2px 
2 1 -1 R2 ρ sinθ exp(-iϕ) sinϕ 2py 

3 0 0 2/√3 R3 (27-18ρ+2ρ2)    3s 
3 1 0 √2 R3 (6ρ-ρ2) cosθ   3pz 
3 1 +1 R3 (6ρ-ρ2) sinθ exp(+iϕ) cosϕ 3px 
3 1 -1 R3 (6ρ-ρ2) sinθ exp(-iϕ) sinϕ 3py 
3 2 0 1/√6 R3 ρ

2 3cos2θ -1   dz2  
3 2 +1 R3 ρ

2 sinθ cosθ exp(+iϕ) cosϕ dxz 
3 2 -1 R3 ρ

2 sinθ cosθ exp(-iϕ) sinϕ dzy 
3 2 +2 1/√2 R3 ρ

2 sin2θ exp(+i2ϕ) cos2ϕ dx y2 2−  
3 2 -2 1/√2 R3 ρ

2 sin2θ exp(-i2ϕ) sin2ϕ dxy 
    ( )ρ−

π
= − expa1R 2/3

o1
    

    ( )2/expa
8

1R 2/3
o2 ρ−

π
= −   ρ = r

ao
   

    ( )3/expa
81

1R 2/3
o3 ρ−

π
= −

 

    

 
 The surfaces where the orbitals have zero value are called nodal surfaces. Looking the 

form of functions in Table 2.1 it is clear that the nodal surfaces depend on r, ϕ  and θ 
functions: 

- R1, R2 and R3 functions have only one nodal surface in the infinity, the polynomials 
have n-l-1 nonzero solutions; since the points with the same r value build a sphere, an orbital 
has n-l spheric nodal surfaces, one of them is in the infinity; 

- although the points with common θ build a cone, sinθ is zero at 0o or 180o but according 
to the definition this is neither a plane nor a surface, only the z axis; cosθ is zero at 90o and 
define nodal plane or cone(s) (see e.g. the ψ(3,2,0) function); the total number of conic nodal 
surfaces is l - m ; 

- the points with common polar angle ϕ build planes; sinϕ=0 defines the xz plane, while 
cosϕ=0 the yz one; the number of planar nodal surfaces is m . 

Summing up the nodal surfaces of an orbital we have for the sum n-1. The shapes of the 
orbitals of hydrogen atoms are presented in Fig. 2.3. 

 



                                                                                                       Billes: Structural Chemistry 

27 

 
Fig. 2.3 
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It is interesting to denote, that the electrons have finite charge densities at the place of the 
nucleus (e. g. s electrons, see Table 2.1 and Fig. 2.3.  

 
 
2.2.2 Angular and magnetic moments of the hydrogen atom 
 
The energy levels of the hydrogen atom are degenerated. If an external electric (E) or 

magnetic (B) field acts on the atom, the levels split (the direction of the external field is 
regarded always as z). Vectors in this case can be defined by their absolute value and their z 
component. 

The eigenfunction of the square of the orbital angular moment operator ( l̂ ) act on the 
angular part of the energy eigenfunction    

 
  ( ) m

l
2m

l
2 1ˆ YllY h+=l  (2.11) 

 
Therefore we have for the absolute value of the orbital angular moment operator  
 
  ( ) hh *1ll ll =+=  (2.12) 
 
The z component of l has the same eigenfunction as 2l̂ , so 
 
  m

l
m

l mˆ YYlz h=  (2.13) 
 
The possible values of lz are 
 
  hm=zl  (2.14) 
 
Both l and lz are quantified, therefore both the absolute value of the orbital angular moment 
(by l)and its direction (by m) are quantified.  

If e.g. l=3, then l*= 12 , and the possible values of m are 3, 2, 1, 0, -1, -2 and -3. The 
corresponding angles are calculated like 

  





=α *l

marccos  

 
Fig. 2.4 and Table 2.2 introduce the results. 
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Fig. 2.4 
 

 Table 2.2 
 The possible directions and relative values of lz if l=3 
 

     
m h

zl   
angle (B, l) 
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-3 3
2   
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The  orbital magnetic moment is (see Eq. 1.28) 
 
  *lBm µ−=  (2.15) 
 

 and its z component is like Eq. 2.15 
 
  mBzm µ−=  (2.16)  
 

The spin angular moment (see Eqs. 1.24 and 1.25) is similarly determinable knowing the 
eigenvalue equation  

 
  ( ) ( ) ( )σϕ+=σϕ h1ssˆ 2s  (2.17) 
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with the "spin coordinate" σ , the spin quantum number s and the eigenfunction ϕ . The 
eigenvalues of s are 
  ( ) hh *s1ss =+=s  (2.18) 
 
the only value of the quantum number s is1/2. The eigenvalues of the z component of the spin 
is determined with the help of Eq. 2.11, 
 
  ( ) ( )σmσŝ sz ϕ=ϕ h  (2.19) 
and its absolute value is 
  hsm=zs  (2.20) 
 
Since − ≤ ≤ +s m ss , the spin magnetic quantum number has only two values: -1/2 and +1/2. 

The corresponding magnetic spin moment is 
 

  *s2 Bsm µ−=  (2.21) 
 
and its z component has the form 
 
  sBzsm m2, µ−=  (2.22) 
 

The total angular moment of the electron is the sum of the orbital angular moment and the 
spin: 

  j l s= +  (2.23) 
Solving the eigenvalue equation of 2ĵ  we have 
 
  ( ) hh *j1jj =+=j  ( sl= j + ) (2.24) 
 
j is the total angular moment quantum number. For the z component we have 
 
  hjzj m=  ( )jmj +≤≤− j  (2.25) 
 
and mj is the corresponding magnetic quantum number. Of course, the magnetic moments can 
be also calculated, similarly to Eqs. 2.16 and 2.17. 

The nuclear spin (if it exists, see Section 1.4.1) has the eigenvalue equation 
 
  ( ) ψ=ψ 22 1+IIˆ hI  (2.26) 
 

with I, the nuclear spin quantum number. The absolute value of the nuclear spin is 
 

 ( ) hh *I1II =+=I  for hydrogen 
2
1I =  (2.27) 

 
The z component of the nuclear spin has the eigenvalues 
 
 hIzI M=   ( )IMI- +≤≤ I  (2.28) 
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For hydrogen 
2
1,

2
1M +−=I . The corresponding nuclear magnetic moment has the 

eigenvalues 
 
  *INpI gM µ=  (2.29) 
 
gp is the Landé factor of the proton, its z component is 
 
  INpzI gM M, µ=  (2.30) 
 

Table 2.3. gives a general survey on the electron moments. 
 

Table 2.3. 
Electron moments, a survey. 

Variable Nomination 1) Equation  2) 
Mechanic moment 
operator vector  ô   

Eigenvalue equation  ( ) ψ+=ψ 22 1ooˆ ho  
Moment vector o  
Absolute value o ( ) hh *o1oo =+=o  
Quantum number o  
z component operator 

zô  ψ=ψ hmˆ zo  
Magnetic quantum 
number m  

Absolute value oz oz=mh  
Magnetic moment 
operator vector 

q̂      

Eigenvalue equation  ( )ψ+µα=ψ 1ooˆ 22
B

2q  
Moment vector q  
Absolute value q *oBq αµ=         
z component operator zq̂   
Eigenvalue equation  ψαµ=ψ mˆ Bzq       
Absolute value qx mBzq αµ=      
 
1) Orbital angular moments are labelled with   l; 
    orbital magnetic moments are labelled with   m; 
    spin angular moments are labelled with       s; 
    spin magnetic moments are labelled with    ms. 
    Eigenfunction for orbital moments is l

mY ; 
    eigenfunction  for spin moments is labelled with  ϕ. 
 
2) α is for orbital electron moments  -1, 
            for spin  electron moments   -2. 
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2.2.3 Selection rules for the hydrogen spectrum 

 
The necessary conditions for the generation of the hydrogen spectrum are 
 
- energy difference between the ground and excited states; this difference is equal to the 

energy of the photon: 
 
  ν=−=∆ hEEE ji  (2.31) 
 
- the transition moment vector (Eq. 1.46) is not zero: 
 
  0* ≠τψ∆ψ= ∫ dji pP  (2.32)   
 
The change in the dipole moment is in the case of one electron  
 
  ∆ ∆p r= −e  (2.33) 
 

Its Cartesian components of Eq. 2.33 are 
 
  ∆ ∆p e rx = − sin cosθ ϕ  (2.34) 
  ∆ ∆p e ry = − sin sinθ ϕ  (2.35) 
  θ∆−=∆ cosrepz  (2.36) 
 
The space element is 
 
  drddrd θϕθ=τ sin2  (2.37) 
 
Considering Eqs. 2.34-2.37 we have for the components of the transition moment vector  

 ( ) ( ) drddrrrre ji θϕϕθ∆θϕψθϕψ−= ∫ ∫ ∫
∞ π π

cossin,,,,P 22

0 0

2

0

*
x  (2.38) 

 ( ) ( ) drddrrrre ji θϕϕθ∆θϕψθϕψ−= ∫ ∫ ∫
∞ π π

sinsin,,,,P 22

0 0

2

0

*
y  (2.39) 

 ( ) ( ) drddrrrre ji θϕθθ∆θϕψθϕψ−= ∫ ∫ ∫
∞ π π

cossin,,,,P 2

0 0

2

0

*
x  (2.40) 

 
The part of the integrands depending on the angle coordinates determine the zero (or non-

zero) values of the transition moment vector.  
 
Integrating with respect to θ from 0 to π 
 all integer powers of sinθ the result non-zero,  
 for the even powers of cosθ the result is non-zero, 
 for its odd powers the result is zero. 
 Integrating with respect to ϕ from 0 to 2π  
 even powers of sinϕ the result non-zero, 
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 for its odd powers the result is zero, 
 even powers of cos ϕ  result non-zero, 
 for odd powers of cos ϕ the result result zero.  
 
For excitation of the hydrogen atom from the 1s state (100) to the 2s state (200) the 

angular function part of the Eqs. 2.38-2.40 (see Table 2.1 for the eigenfunctions) 
 
for the x component: sin2θcosϕ the integral is zero 
for the y component: sin2θsinϕ the integral is zero 
for the z component: sinθcosθ the integral is zero 
 
there is no transition. It should be so, since 0=∆l . 
 
For excitation of the hydrogen from the 1s state (100) to the 2px state (211) the angle 

function part of the Eqs. 2.38-2.40 (see Table 2.1 for the eigenfunctions) 
 
for the x component: sin3θcos2ϕ the integral is non-zero 
for the y component: sin3θsinϕcosϕ the integral is zero 
for the z component: sin2θcosθcosϕ the integral is zero 
 
therefore the direction of the transition is x. 
 
Similarly, one can find for the transition for 1s state to 2py one, this direction is y, for the 

transition for 1s state to 2pz one the direction is z. 
The general result for the selection rules is 

  
1±=∆l  
0≠∆n  

The first rule allows the transition. The second one is necessary for having energy 
difference between the ground and the excited states of hydrogen. If ∆n=0, transition does not 
exist.  

 
2.2.4 The electronic spectrum of the hydrogen atom 
 
The hydrogen atom can be excited in an electric arc or with discharges. According to Eq. 

2.7 the necessary wavenumber of the spectral line is 
 

  j22 nn
n
1

n
1R~ >










−=

∆
=ν i

ij
Hhc

E  (2.41) 

 
The corresponding spectral lines can be ranged into series. In a given series the nj quantum 

number does not change, i.e. this is the ground state. The distance between the neighbouring 
lines decreases and there is a limit of such a series at ∞→in and therefore 

   2lim n
R~

j

H
jit T ==ν  (2.42)    
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The Ti like expressions are called spectral terms. The wavenumber of the spectral line is the 
difference between such kind terms.  
 

The most important spectral line series of the hydrogen atom are listed in Table 2.4., Fig. 
2.5 introduces the electronic spectrum of the hydrogen atom, and the series are also shown 
(the positions of the lines are given in wavelengths)  

 
 Table 2.4  
 The spectral series of the hydrogen atom 
 

ni name of the series spectral region 
1 Lyman ultraviolet (UV) 
2 Balmer visible (VIS) 
3 Paschen infrared (IR) 
4 Brackett infrared 
5 Pfundt infrared 
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Fig. 2.5 
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2.3 Many-electron atoms 
 

If the atomic number is greater than one, more than one electron move around the nucleus. 
These electrons do not move independently. There are electric and magnetic interactions 
between the individual electrons of the electron cloud. 

Hydrogenic atoms (or ions) have only one electron on their external shell. For these atoms 
the hydrogen model is a good approximation. 

All other atoms are far from this model, their description is very complicate.  
 
2.3.1 Hydrogenic atoms 
 
Extending Eq. 2.7 to these atoms we have 
 

  E z hc hcH z
n

R
n

R
n

= − = −
2

2 2  (2.43) 

 
where Rz is the Rydberg constant for the atom with atomic number z.  

Practically, comparing this eqution with the data of the measured spectra, it is rigorously 
not valid. The positions (wavenumbers) of the lines can be describe with the equation 

 

   ( ) ( ) 











−
−

−
=ν 22 n

1
n

1R~
iijj

z aa
 (2.44) 

 
In some cases one have to substitute two different but very close numbers for the constants aj 
and ai to describe the real positions of the spectral lines. The bands described by Eq. 2.44 
build series with constant nj. Becouse of the corrections also nj>ni is possible. 

Alkali metal atoms with one s electron on their external shell approach quite well the 
hydrogenic atom model.  The most important spectral series of the alkali metal atoms are 
listed in Table 2.5. 
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  Table 2.5 
  Spectral series of alkali metal atoms 
 

name of the series nj ni
principal 4 >4
sharp 4 >4
diffuse 4 >4
fundamental 3 >3

 
  

 2.3.2 Other many-electron atoms 
 
Strong electron interactions exist in open (not absolutely closed) electron shells and 

clouds. The Hamilton operator of a many-electron system can be written in the following 
form: 

  ∑ ∑ ∑∑
>

+−∇−=
i i i ij ijie r

e
r

ze
m

H
22

2
2

2
ˆ h    (2.45) 

 
the sums are extended over all electrons, ri is the electron-nucleus distance, rij is the electron-
electron one. The first term in Eq. 2.45 is the kinetic energy operator ( ∇ is the nabla 
operator), the second is the potential energy of the electron-nucleus interactions, while the 
third one gives the same for the electron-electron interactions. The atomic energy of these 
atoms depends also on the angular moment quantum number l.  

The quantum mechanical calculations resulted the following energy level series for the 
subshells: 

 ...543433221 spdspspss EEEEEEEEE <<<<<<<<  (2.46) 
 
According to Hund's rule the atom in its ground state adopts the greatest possible number 

of unpaired electrons.  
The electron configuration of the atoms is labelled with giving the value of the principal 

quantum number, the letter for the orbital angular quantum number l, and its superscript is the 
number of electrons in the subshell, e.g. the electron configuration of the sulfur atom in its 
ground state is 1s22s2p63s2p4. Labelling the orbitals with squares and the spin directions with 
arrows, we have 

 
1s 2s 2p 2p 2p 3s 3p 3p 3p 
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ 
 
The moments of the many- electron atoms are the vector sums of the individual moments. 
 
The total orbital angular moment of all the electrons is 
  
  ∑=

i
ilL  (2.47) 

 
Similarly to the Eq. 2.13 we have for the absolute value of this orbital angular momentum 

for all electrons 
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  ( ) hh *L1LL =+=L  (2.48) 
 

For two electrons 21 llL +=  and also for more electrons one have to add them as vectors. 
There exists also the corresponding magnetic quantum number ML, like Eq. 2.15. The states 
with different values of L are labelled with capitals (like the subshells according to l): 
 

 L = 0 1 2 3 4 5 etc. 
 label S P D F G H etc. 
 
The spin vector for all electrons of the atom is also the vector sum of the individual spin 

vectors: 
  ∑=

i
isS  (2.49)  

and its absolute value is 
 
  ( ) hh *S1SS =+=S  (2.50) 
 
S is the spin orbital quantum number of all electrons. For two electrons S = 1 or 0. The z 
component of S is determined by the magnetic quantum number for all electrons MS, like Eq. 
2.20. 

The calculation of the total angular moment for all electrons J depends on the type of 
interactions. Two types of electron-electron interactions exist: 

 
A. electrostatic interactions 
B. magnetic (spin-orbital) interactions 
 
If the atomic number z < 30 then A>B, case ,  (for Zn z=30) 
if the atomic number 30z ≥  then B>A, case . 
 

 This is the Russel-Sounders or ls coupling. The total angular moment for all electrons is 
the vector sum of L and S: 

 
   SLJ ˆˆˆ +=  (2.51)  

and  
 ( ) S-L1,...,-S+LS,+L=JJ1JJ *hh =+=J  (2.52) 
 
Its z component is 
 
 SLJJJzJ MMMJMJM +=+≤≤−= h  (2.53) 
 
The quantity 
 

 
( )
( )rarely veryS,L1L2

usually S,L1S2
<+=ι
≥+=ι

 (2.54) 

 



                                                                                                       Billes: Structural Chemistry 

39 

is the multiplicity of the state. The names of the states are: if ι=1 this is a singlet state, if ι=2 
this is a doublet one, if ι=3 this is a triplet one, etc.  

 This is a jj coupling. The total angular moment for all electrons is the sum of the total 
angular moments of the individual electrons: 

 
 

212121 jj,...,1jj,jjJ:ˆˆ −−++== ∑ electronstwofor
i

ijJ  (2.55) 

Example:  the electron states of two p electrons, ls coupling. 
The individual quantum numbers: 
 

 first electron second electron 

 l1 = 1 2l*
1 =  

2
1s1 =  

2
3s*

1 =  l2 = 1 2l*
2 =  

2
1s 2 =  

2
3s*

2 =  

 
The quantum numbers for all electrons: 
 
 L = 0, 1, 2 6,2,0L* =  S = 0, 1 2,0S* =  
 
 
The possible vector sums of the angular moments and spins are (in h  units): 
 
 
 L*=0 2L* =  6L* =  
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 S* = 0 2S* =  

   
The combination of the orbital and spin moments is not arbitrary. Symmetric orbital 

moments ( L is even, in our case L=0,2) can be combinated only with antisymmetric spin 
moments (the electron spins have opposite directions, in our case S=0) and antisymmetric 
orbital moments  L is odd (in our case L=1) can be combinated with symmetric spin moments 
(the spin moments are parallel, in our case S=1).      

 The possible combinations of the two moments are L=0 & S=0, L=1 & S=1, L=2 & S=0.  
The effect of the interactions are the following. Labelling of the states: label of the total 

orbital angular moment, its left superscript is value of  the multiplicity ι, its right subscript is 
the value of total angular quantum number J). 

 
the angular moment S P D 
electrostatic interaction 1S 3P 1D 
magnetic interaction 1S0                         

3P0 3P1 3P2 1D2 
(spin-orbit interaction) 
external magnetic field 0 0 -1,0,1 -2,-1,0,1,2 -2,-1,0,1,2     
(possible values of MJ) 
 
The possible vector sums are as follows (for 0

1S  both vector terms are zero): 
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According to this example the energy levels are shown in Fig. 2.6. 
 

 
 

Fig. 2.6 
 

2.3.3 Interaction with external magnetic field 
 
The energy of the electron states (Eo, without interactions) depends on the electrostatic 

interactions (on J*) and in the presence of weak or modest magnetic fields B on MJ: 
 

 ( ) BgAEE JBo MJ
2
1 2* µ++=  (2.56) 

 
A is a coupling constant, g is the Landé factor: 
 

 ( ) ( ) ( )
( )2*

2*2*2*

J2
LSJ1 −+

+=g  (2.57) 

 
The electronic levels split according to MJ quantum number (see e.g. Fig. 2.6) to 2MJ+1 
levels. This effect is the Zeeman effect. 

The Landé factor of a free electron is (l = 0, 
2
1s = , 

2
1j = , 0l* = , 

2
3s* = , 

2
3j* = ) 

applying Eq. 2.57  g = 2. 
In the case of strong magnetic field the magnetic interactions dominate  (jj coupling): 
 
 ( )BM2MgMMAEE SLSLo +++=   (2.58) 
 

This very strong splitting is the Paschen-Back effect. 
The energy levels of the nucleus splits similarly in magnetic field: 
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 BNNgoEE IMµ−=  (2.59) 

 
The splitting of the energy levels in external magnetic field is important in the methods of 

nuclear magnetic resonance and electron spin (paramagnetic) resonance. 
 
2.3.4 Interaction with external electric field 
 
In external electric field (E) the electronic energy levels also split but according to the 

equation 

 ( ) 













 −++=

2*22 J
3
1M2E

2
1

Jo baEE  (2.60) 

 
a and b are constant. In this Stark effect the levels splits only according the absolute values 

since the MJ quantum number is squared. The levels split to MJ+1 ones. 
 
2.3.5 Interpretation of the electronic spectra 
 
The emission of the photon is either spontaneous or induced (see Section 1.2). The 

excitation with photons is called absorption (Fig. 2.7). Beside the photon absorption (optical 
excitation) the excitation is possible with electric energy, with collisions and with thermal 
energy. 

 

 

E

Ej

i
* excited state

ground state

absorption emission

 
Fig. 2.7 

 
The absorption and the emission  is possible if the transition moment is not zero. Table 2.5 

shows the selection rules for one-electron and for many-electron atoms. These selection rules 
are strictly only for electrostatic interactions valid. If the magnetic (spin-orbit) coupling is 
strong, the ∆S >0 is also possible.  

We shall studied the structure of  the spectrum of a many-electron atom on the example of  
potassium. The potassium is a hydrogenic atom. Its electron state is 1 2 3 42 2 6 2 6s s p s p s. The 
atom has a closed Ar configuration and only one electron on the outside (valence) shell.  
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 Table 2.6 
 Selection rules for one- and many-electron atoms 
 

quantum number one-electron many-electron 
∆n ≠ 0  
∆l or ∆L ±1 0 1,±  
∆s or ∆S 0 0 
∆j or ∆J 0 1,±  0 1,±  
∆mj or ∆MJ 0 1,±  0 1,±  

 

Therefore the characteristic quantum numbers are: L = l = 0, 
2
1sS == , ι = 2,  

2
1jJ == . 

The possible spectral series are (see Section 2.3.1,  Table 2.5 and Fig. 2.8): 
 

sharp series S → P 2
1 2

2
1 2

2
3 2S P P→ ,  1L1,0J +=∆+=∆  

principal series P → S 2
1 2

2
3 2

2
1 2P P S, →  1L0,1J −=∆−=∆  

diffuse series D → P 2
3 2

2
3 2

2
1 2D P P→ ,  1L0,1J −=∆−=∆  

  2
5 2

2
3 2D P→  1L1J −=∆−=∆  

fundamental series F → D 2
5 2

2
5 2

2
3 2F D D→ ,  1L0,1J −=∆−=∆  

  2
7 2

2
5 2F D→  1L1J −=∆−=∆  

 
The line of the sharp and the principal series split into 2 lines (doublets), those of the 

diffuse and the fundamental series split into three lines (triplets). ∆L = 0 transition does not 
appear, since only one electron is in the valence shell in excited state. The addition of the 
orbital angular and spin angular moment to the total angular moment is similar like in the case 
of the example in Section 2.3.2. 

Fig. 2.8 presents the term diagram (Grotrian diagram) of the potassium spectrum. You can 
find the transitions of the mentioned series, the lines of the series and their sum, the electronic 
emission spectrum.   

Generally the interpretation is very difficult. In the case of jj coupling the theoretical 
interpretation is quite impossible.  

If the atom will be ionized the resulted ion has an absolutely different  spectrum. 
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Fig. 2.8 
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2.3.6 The measurement of the atomic spectra 
 
Fig. 2.9 shows the scheme of an emission spectrometer. The computer controls the system 

and stores the measured data. The excited sample emits the spectrum. The monochromator 
resolves the spectrum, the computer controls the monochromator by stepwise turning the 
grating (see Section 1.5). The detector detects the optical signal and transforms it into electric 
one. The electronics under the control of the computer forms the signal and transfers it to the 
computer (data acquisition).    

 

sample monochromator detector

excitation electronics

computer

stepping

control

data acquisition

control

 
 

Fig. 2.9 
 
 

Fig. 2.10 is the scheme of  an absorption spectrometer. The difference between the 
emission and the absorption spectrometer (with monochomator) in the sample handling. At 
the emission spectrometer the sample is the light source, here is the sample passive and a light 
source transilluminates it. The transmitted light will be detected. The control and the data 
acquisition is like at the emission spectrometer. Mostly double-beam absorption 
spectrometers are applied, i.e. the sample and the reference are parallelly measured, the 
absorption of the sample is related to the that of the reference. 

 

sample monochromator detector

electronics

computer

stepping

control

data acquisition

control

light source

 
 

Fig. 2.10 
 

Light sources 
 -emission: the sample itself , atomic emission spectroscopy, AES 
  - - in a graphite furnace; 
  - - in electric arc; 
  - - in flame (gas torch), developed to flame photometry; 
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  - - in electric spark; 
  - - excitation in discharging tubes, developed inductively coupled plasma   
  spectroscopy, ICP, the most developed method; 
  - - excitation with electron beam. 
 - absorption: atomic absorption spectroscopy, AAS 
  - - tungsten or halogen lamp in the visible region; 
  - - SiC bar in the infrared region; 
  - - ceramic bar in the IR region; 
  - - high pressure mercury lamp in the far IR region; 
  - - low pressure D2 discharging lamp in the UV region; 
  - - high pressure Xe lamp for fluorescence spectra; 
  - - selective discharging lamps for selective measurements. 
 
monochromator (see Section 1.5): it resolves the spectrum using a (reflecting) grating or a 

prism,  that is transparent in the investigated region (or a Fourier transform spectrometer is 
used). 

  
detector: transforms the optical signal to electric one.  

  - photocell, photodiode, photodiode array, photomultiplier (PMT: photo- 
 multiplier tube), photoelement in the UV and VIS regions, CCD (charge-  
 coupled device); 

  - thermoelement in the VIS and IR regions; 
  - piezoelectric crystal, Golay cell (IR, far IR); 
  - chilled semiconductor detectors (IR, near IR). 
 
electronics: signal elaboration (signal difference for double-beam spectrometers,  

amplitude or phase modulation, amplification), digital computer, printer and plotter. 
 
The spectral information: 
  - frequency, i.e. position of the line; 
  - intensity, i.e. area of the line; 
  - profile or shape of the line. 
 
Applications of the atomic spectra: mostly quantitative and qualitative chemical analysis, 

  rarely physics (theory of atomic structure). 
 

2.4 Ions 
 

This chapter deals beside the atomic ions also with the molecular ions. 
 
2.4.1 Ionization 
 
The generation of  positive ions is called ionisation, e.g. the ionization of the neutral atom 

A is 
 
  A e A− =− +  (2.61) 
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The external (outside) ionization is the removing of an electron from the outmost (valence) 
shell of the atom. Internal (inner) ionization is the removing of an electron from the core 
(inner electron shells) of the atom.  

The electron gain is the building of a negative (or more negative) ion by receiving an 
electron: 

  A e A

A e A

+ =

+ =

− −

− − −2
   (2.62) 

 
The ionization energy of an atom (I)  is the necessary energy to remove an electron from 

an atomic (molecular) orbital. Table 2.7 contains the first (lowest) and second ionization 
energies of some atoms. 

  
  Table 2.7 
  First and second ionization energies of some atoms (kJ mol-1) 
 

atom I1 I2 atom I1 I2 

H 1312.0 - Li 513.3 7298.0 
Li 513.3 7298.0 Be 899.4 1757.1 
Na 495.8 4562.4 B 800.6 2427.0 
K 418.8 3051.4 C 1086.2 2352.0 
Rb 403.0 2632.1 N 1402.3 2856.1 
Cs 375.5 2420.0 O 1313.9 3388.2 
 F 1681.0 3374.0 
 Ne 2080.6 3952.2 

 
 

In the first column of the periodic table the first ionization energies decrease with the 
increasing atomic number since the valence shell is more and more far away form the nucleus 
and the core electron shell shields the nuclear charge. The same is the situation with the 
second ionisation energy that is higher since the removed electron is attracted by the positive 
ion. In  the first row the first ionization energy increases since the nucleus became more and 
more positive; the second ionization energy has a jump from Li to Be since at the Li the 
electron must be removed form a closed shell, otherwise the tendency is the smilar to the first 
ionization.  

The electron affinity (A) is the energy gain that we get if an electron is absorbed by an 
atom or a molecule. The ionization energies of the negative ions are equal with opposite sign 
to the electron affinity of the corresponding ion, e. g. for the oxygen atom: 

 
  ( ) ( )OAOI −=−  (2.63) 

 

Table 2.8 contain the electron affinities for the first and the second electrons. 
The hydrogen has very low electron affinity, fluorine and chlorine have higher ones and 

here is the maximum. The heavier halogens have lower and lower electron affinities. There 
were not found data in the literature for the second electron affinities of halogens. The 
electron affinities of the first row elements do not show a tendency. 

 Several methods exist for the ionization of atoms (A) and molecules (M). The most 
important methods are here listed. 
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  Table 2.8 
  Electron affinities of some atoms (kJ mol-1) 
 

atom A1 A2 atom A1 A2 
H 72.8 Li 59.8  
F 322.0 Be -18.0  
Cl 348.7 B 23.1  
Br 324.5 C 122.5  
I 295.3 N -7.0  
At 270.5 O 140.9 -844.0 
 F 322.2  
 Ne -29.0  

 
1. Collision in vacuum with high energy electrons. This is a partly inelastic scattering 

(Section 1.2). The reactions of the process are (A atom, M molecule) 
 
  A e A e+ = +− + −2  (2.64)  
     

  M e M e+ = +− + −2  (2.65) 
 
This is a widely applied method in mass spectroscopy, the electron impact (EI) ionization. 

During this ionization also the generation of negative ions is possible, e. g. 
 
   ABC e AB C+ = +− −  (2.66) 
 
2. Ionization with photons (inelastic scattering with particle change). If the photon energy 

is higher than the ionization energy of the atom (molecule) the atom (molecule) will be 
ionized: 

 
  A h A e+ = ++ −ν  (2.67) 
 
In the spectrum at the frequency of the photon there is a break: the spectral line density 

increases and approaches a limit, at higher frequencies a diffuse region appears. This method 
is applied in the photoelectron spectroscopy (see Subsections 3.6.6  and 4.5.1). 

 
3. Penning ionization. The atom A excited with photon absorption transfers its energy to 

atom B with collision (partly inelastic scattering). If the transferred energy is high enough the 
atom B will be ionized: 

 
  A B A B e* + = + ++ −  (2.68) 
 
4. Dissociative ionization. The atom A excited with photon absorption collides with the 

molecule BC. The following reaction proceeds: 
 
  A BC AC B e* + = + ++ −  (2.69) 
 
 
5. Ionization through collision. The excited atom A collides with atom B. The result is 
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  A B A B e* + = + ++ −  (2.70) 
or 
  A B A B* + = ++ −  (2.71) 
 
6. Associative ionization. The excited atom A associates with atom B to a molecular ion: 
 
  A B AB e* + = ++ −  (2.72) 
 
7. Auger effect. After an internal ionization there is an electron gap at an internal electron 

shell. This gap will be filled by an electron jump form a higher level. The energy difference  
between the two states can resulted in the emission of an X-ray photon or to a second 
ionization: to the emission of a second photon. The latter is the Auger effect (see also 
Subsection 4.5.2). 

 
8. Chemical ionization (CI). This is a special method for the ionization of molecules. A 

high velocity molecular ion (let us denote it with X+) collides with the molecule M. The 
possible reaction are: 

 
  X M X M+ ++ = +  (2.73) 
  

  X M XM+ ++ =  (2.74) 
 
If X contains hydrogen atoms (XH) then the reaction   
 
  XH M X MH+ ++ = +  (2.75) 

 
is also possible. The method is applied in the mass spectroscopy (Subsection 3.8). 

 
9. Fast atomic bombardment (FAB). This is also a special method for the ionization of 

molecules. The molecules are bombarded with high velocity atom or ion radiation (Ar, Xe, 
Cs+). The method is applied in the mass spectroscopy (Subsection 3.8) and in the secondary 
ion emission spectroscopy (Subsection 4.5.3). 

 
2.4.2 Interactions of ions 
 
The interaction of ions with electromagnetic waves is similar to those of the neutral atoms. 

Similarly, spectral line series appear in the emission and absorption spectra of the ions. Both 
electric and magnetic fields act on the ions: 

 

  F E= Q  (2.76) 

 

  F v B= ×Q  (2.77) 

 

F is the acting force, v is the velocity of the ion. With the help of these equations the ions can 
be directly detected. Using the Lorentz force (Eq. 2.77) with constant B the particles can be 
separated by their velocities. Having the same Q charge (e.g. electrons) and different 
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velocities  the particles are detectable with the same (in the space fixed) detector. They come 
after one other, according their velocity. This is the “time-of-flight” (TOF) detection method. 

 Changing the magnetic induction, particles with different velocity can be directed to 
the detector. This method is important in the mass spectroscopic (Subsections 3.8 and 4.5.3), 
and in the different electron spectroscopic methods (Subsections 3.6.6, 4.,4.4, 4.5.2). 

 


