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Introduction

Physical Chemistry
@ Physical Chemistry | - Equilibrium (phase equilibrium, chemical
equilibrium)
@ Physical Chemistry Il - Change (reaction kinetics, transport,
electrochemistry)

@ Physical Chemistry III - Structure (molecular structure,

spectroscopy, materials science)



Introduction

Curriculum

Introduction

@ The basics of quantum mechanics

The structure of the hydrogen atom

Structure of many-electron atoms

Optical spectroscopy

Rotational spectroscopy

Vibrational spectroscopy

@ Electronic structure of molecules



Introduction

Curriculum

@ Photoelectron spectroscopy

Lasers and laser spectroscopy

e Fundamentals of nuclear structure

Nuclear magnetic resonance

@ Mass spectrometry

X-ray diffraction



The structure of atoms, molecules, and other particles is described
by quantum mechanics.

The foundation of quantum mechanics was laid in the 1920 ’s.
Preliminaries: some experiments which contradict the principles of

classical physics



Introduction to spe

Joseph Fraunhofer's experim

The sunlight was dispersed by a grating.

Dark lines were observed in the continuous spectrum.




Introduction to spectroscopy
The spectrum of the sun
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Explanation:
@ the sun emits continuous radiation

@ the particles of the gas surrounding the Earth and the Sun

absorb only photons of particular wavelength /frequency

@ particle A absorbs light of va1, vao, ... frequency particle B

absorbs light of vg1, Vg, ... frequency, etc.

@ hence the energy of particle A can be changed by quanta of
AEA = hvuat, hvgs, ... and the energy of particle B can be

changed by AEB = hVBl: hl/32,



Single-beam UV-visible absorption spectrophotometer
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UV-visible absorption spectrum of Oxazine 1
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Some physical properties of submicroscopic particles are quantized,
that is, the corresponding physical quantities have only discrete
values.

This realization is reflected by the term quantum mechanics



In the non-relativistic case the submicroscopic systems can be

described by the Schrédinger equation

Let's start from the beginning. What does i stand for?



Basic concepts from

complex numbers ¢

?P. Atkins, J. Paula, R. Fried

@ Natural numbers

@ negative numbers (Diophantus [200 - ¢.284 CE]: The solution
of the 4 = 4x + 20 equation is absurd.)

@ rational numbers (Pythagorean school: all phenomena in the

universe can be reduced to whole numbers and their ratios)

/|

but what is v/2? <_1—.J

V2

e irrational numbers (Hippasus, 5th century BC) ...



Basic concepts from

complex numbers

Real numbers form a closed set for the
a+b,a—b,axb,a/b (a, b€ R) operations.
But what is /—17 (Cardano, 1545)



Basic concepts fro

complex numbers

real line vs. complex plane

1D vs. 2D
(x)  (xy)

X,y € R (ordered pairs) (x,y) # (v, x)



Basic concepts from

complex numbers

addition, (a, b) + (¢, d) = (a+ ¢, b+ d)
subtraction, (a, b) — (c,d) 2 (a—c,b— d)

multiplication, (a, b) - (c,d) £ (ac — bd, ad + bc)
real numbers have the form of (a, 0) they lie on the real axis:

(3,0) + (c,0) = (a+c,0)
(a,0) — (¢,0) = (a—c,0)
(a,0) - (c,0) £ (ac,0)




Basic concepts from

complex numbers

imaginary numbers have the form of (0, b) they lie on the imaginary

axis:

(07b)(0a b) £ (_b2’0)
22=—-p zeC ,beR

(0,1)-(0,1) £ (—1,0)



Basic concepts from

complex numbers

z =(0,1) is special, it is denoted by /, and called the imaginary
unit (i> = —1) with its help z = (a, b) = a + bi

complex conjugate of z = a+ bi is denoted by a star superscript
z¥=a—bi

z-z* = (a+ bi)-(a— bi)=a®+b*>=|z|?

Im
b

o



Basic concepts from

complex numbers

division by a complex number:

a+bi a+bi c—d
c+di c+di c—di
_ (a+ bi)(c—di)
B 2+ d?
(ac+ bd)  (bc — ad) .
2+ d? + 24 d2




Basic concepts from

complex numbers

polar form of complex numbers

z=a+ bi=r-(cosp+isinyp)

b
r=1+/a’+ b2 tanp = -

multiplication and division in polar form:

71 = ri(cos p1 + isin 1) 7y = rp(cos o + isiny)

7120 = - r(cos(p1 + 2) + isin(p1 + p2))

Z r . .
a_ —1(cos(<,01 — @2) +isin(p1 = ¢2))
Z> rn



Basic concepts from

Exponential functions

@ 2"=2X2x%x2x---X%X2

° 2n/m:mﬁ
0 27"/m— L

on/m

MOV

1+1+1+ , Where
21 3l

@ e= lim (1+1) =1+

n—o0 1!

e =2.71828182

@ Expression 'exponential function’ generally refers to e*

e* = lim (1+ X)”:1+%+§_T+§+___

n— oo



Basic concepts from
Logarithm

@ Inverse of a function: g(x) = f~1(x) if g(f(x)) = x.

@ The logarithm is the inverse operation to exponentiation, e.g.,

2loga X — x
@ log, 8 = How many 2s do we multiply to get 87

@ Plots of logarithm functions:




Basic concepts from

Sigma and Pi notation

@ > compactly represents summation of many similar terms: >"; a;
@ [1is frequently used for product of terms: I1;a;

@ Examples

° Z In(a;) = In(a1) + In(az) + - - - + In(a,)

i=1

=lIn(a1az .. Ha
o0
-y 5
n!
n=0



Basic concepts from

Derivation of single-variable

@ The derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with

respect to a change in its argument (input value).

o f'(x):f(l)(x):%(;) _hi_n;‘o f(x—l—h,)7—f(x)

JOcHh) fommm e
secant line tangent line

slope= f'(x)
JO) |mmmmmmmm s 1




Basic concepts from

Derivation of single-variable

@ Derivatives of simple functions

f(x) f'(x) f(x) f'(x)
const 0 In x 1/x
x? 2x sin x cos X
VX 0.5x703 cos x —sinx
x" nx"1 e~ ex
@ Derivation of combined functions
linearity (af (x) + bg(x))' = af(x)' + bg(x)

product rule  (f(x)g(x)) = f(x)g(x) + f(x)g(x)’

quotient rule (@), — f)'e(x)=f(x)e(x)’

&(x) g(x)?

: 1 _ df(g(x)) dg(x)
chain rule f(g(X)) = T(X)T



Basic concepts from

Second derivatives

@ At local minima and maxima of a function the slope is zero:

F'(x0) = 0

o If the second derivative, f”'(xg) > 0, is positive at xg it is a minima,
if f(x0) < 0 itis a maxima. If f”’(xp) = 0 the higher derivatives

should be investigated (e.g. f(x) = x* at x = 0).

= T T .|

global maximum

local maximum

local minimum

global minimum




Basic concepts from

Second derivatives

o In general, if f”(x) > 0 the tangent 'below’ the function,
if f7(x) < 0itis 'above’ the curve. If f”(x9) =0 (and
f"'(x0) # 0), xp can be
an inflection point (e.g. f(x) = x> at x = 0).

[ |
10 —

x3

5 - il




Basic concepts from

Taylor-series

@ Polynomial approximation of a function:

-

(x) = f(x0) + TP (x0)(x — x0) + 2 F P (x0)(x — x0) +

%f(”(xo)(x —x0)3+ %f(“)(xo)(x —x0)*+ ..., where f("(x) = Z;f.

@ Linear approximation: Af =~ 9|, —, Ax

(Ax = (x — xp) and Af = f(x) — f(x0)).

@ If Ax is infinitesimal, then Ax?2 is considered to be zero, and

df = % dx. It is the differential of f(x).

=1
o Taylor-series: f(x) =) mf<">(x0)(x — Xp)"
n=0 "~



Basic concepts fro

Partial derivative

@ z=f = f(x,y) defines a surface.

° —Wéx’”, %: the task is to find
X y

the slope of a two-variable (or

multi-variable) function in the

directions of x and y.

@ Definition: g‘ = lim fxthy) = f(x,y),
Ox|,  h=0 h
of . f(X,y—i—h)—f(X,_y)
—| = lim
dy|, h—o0 h
f f
@ For continuous, well-behaving functions: %g_x = %g_y

(Young-theorem)



Basic concepts from

Exact differential

@ Linear approximation of a function of two variables:

~ Of of

X,Yy=Xo0,;Y0

@ The higher order terms contain contributions proportional to

Ax?, Ay?, AxAy, AxAy? etc.

ly=s030

o If Ax and Ay are infinitesimal, then df = %‘y dx + g—;’ dy.
X

It is called the exact differential of f(x, y).



Basic concepts from
Indefinite integral

@ Reverse of differentiation: if %&X) = f(x) then

J f(x)dx = F(x) 4+ C, where F(x) is the indefinite integral of f(x)
and C is an arbitrary constant.

@ Indefinite integral of elementary functions:

f(x) Jf(¥)

f(x) Jf(x)
X" T : in|]
X x2/2 cos x sin x
e e sin x —cos x
In(x) x(In(x) — 1) c cx

@ Notation: [dx = [ ldx



Basic concepts from
Definite integral

@ The signed area below (plus sign) or above (minus sign) the graph

of function f in the interval bounded by a and b: fab f(x)dx.

o Newton-Leibnitz formula: [” f(x)dx = [F(x)]° = F(b) — F(a),

where F(x) is the indefinite integral of f(x).
&)

@ To understand the N-L formula consider a short interval with
length h: hf(a) =~ fa+h f(x)dx = F(a+ h) — F(a). If h goes

to zero f(a) = dx’x a



Basic concepts from

Taylor-series

if f(x) is infinitely differentiable at a real or complex number a then

1

) = F(a) + F(a)(x — 3) + 37" (@)x — 0 + 50

when a = 0 it is called a Mclaurin series

F(a)(x — a)® + ...



Basic concepts fro

Taylor-series, a = 0

() (x—0p 4



Basic concepts fro

Taylor-series, a = 0

f(x) = sin(x)

. _ 1 3 1 5 1 7
S|nx—0—|—x—i—0—ﬁx —|—O+ax —|—O—ﬁx +...

0o _qn
— Z IX2n+1
prd (2n+1)!



Basic concepts fro

Taylor-series, a = 0

f(x) = cos(x)

1 1 1
cosx-1+0——x +O+EX +0—ax +.
. _1nX2n

rd (2n)!




Basic concepts fro

Euler's formula

recall that eZ:1+z+%22+%z3—|—...

if z=ix

. 1 1 1 1
e =1+ix+ §i2x2 + §i3x3 + Eid'x4 + ai5x5 4+ ...



Basic concepts from

Euler's formula

. 1 1 1 1
eX =1+ ix+=i*x*+ =i3x3 + EI4X4 + =X+ ...

2 3! 51
:1—|—ix—%xz—iéx’s—i—%x‘l—l—iéxs—i—...
:1—%x2+%x4+ix—i%x3+iéx5+...
:(1—%xz-l—%X‘l—...)—l-i(x—%X?’—I-%X‘r’—...)

= cosx + isinx



Basic concepts from

complex numbers

exponential form of complex numbers

z=a+bi=r-(cosep+ising) polar form
e'? = cos 4 ising

z=r-€'¥ exponential form



Basic concepts from

vectors, Euclidean space, comp

® a=asi+a,j+ak

)
o
I
Q&

sum of two vectors (parallelogram law):

a+b=(ax+by)i+ (ay + by)j+ (a- + by )k

scalar (dot) product of two vectors:

ab=ab-cos(¢) = > aib;
i:x,y,z
dot product of two complex n dimensional vectors:

ab= > a’b;



Basic concepts from

vectors

b
by
@ bracket notation: |b) =
b
(al (af a; aj‘,)
b
by n
(alb) = (a1 a5 a;;) =3 atb;



Basic concepts from

vector (cross) product

(axb)x=ayb, —a,b,

axb
ﬁ“ b (a x b), = a,b, — asb,
0
oal 3 (a x b), = axb, — a, by
=-axh

[la x b|| = ab - sin®

a X b is orthogonal to vectors a and b (right hand rule)



Basic concepts from

Newton's laws, conservation of

@ Every object in a state of uniform motion will remain in that

state of motion unless an external force acts on it.
e F=ma

@ For every action there is an equal and opposite reaction.

o If there is no force, F=0,then ma=p =0, i.e, pis

constant.



Basic concepts from

Newton's laws, equation of mo

Equations of motion are obtained from Newton's second law:
F(r,fr,t) = ma=p=mr

with the initial conditions:
r(t =ta) =ra,v(t =ta) =F(t = ta) =va
o Coulomb force: F = K%%2¢,,
2

@ spring force: F = —kr




Basic concepts from

Newton's laws, kinetic and pot

e Work: W = Fdr

W = /5W /Fdr (line integral of a vector field)

tg
= fFrdt fmrrdt 3 fmd(r %mv2B — %mvf\

° Potentlal of a conservative force.
P
2%
nabla: Vo = | 8¢

o
0z

F=—grad(V(r)) = -V V(r)

e Example for non-conservative force: Fyrag ~ v



Basic concepts from

Kinetic and potential energies

@ Work of a conservative force:

s rs
W = /Fdr = —/grad(V)dr =
ra ra

rg
— [ Gdx+ Gldy + GLdz = — [ dV = V(ra) — V(rp)
ra
o Conservation of energy:

E=1imv} + V(rg) = 3mv3 + V(ra)




Basic concepts from
Energy, the ability to do work

e the kinetic energy (Eyin | K) is due to motion; Eyi, = f(p)
a moving object can do work

o the potential energy (Epor | V) is due to position; E,or = g(r)
stored energy of an object that can do work

® Eiot = Ein + Epot or H=K +V

e Hamilton function: E=H=H(p, q), where p,q are the

canonical coordinates.



Basic concepts from

Kinetic energy

2

recall the scalar product of vectors: v v = |v|2 =v

Exin = mV2
p=mv
p2 — m2 V2

2
Exin = p_



Basic concepts from

Newton's laws, simple classical

Etot:Ekin:2
m

dx
2mEgin, = p= m—
mEgin = p = mdt

dx

2Ekin
dt V
[2E
dx — km / dt

/X(t)
x(0)

2Ekin
t
x(0) + 4/ -

x(t) =
p(t) = mv(t) = m% =m
p(t) = v/ 2mEy,

/ 2Ekin
m



Basic concepts from

Newton's laws, simple classical

Restoring force is proportional to the displacement from the

equilibrium position.

The spring stores the energy as V(x) = %kx2 = F = —%
F = —kx £\ = _g
2
’"%:—kx )\_ii\/g_iiw
mA%e = —ket x(t) = et + e Wt = Asin(wt + )
(m\2 + k)eM =0 p(t) = m% — wAmcos(wt + )
x(t) = M = ax el = a’x — )2

dt dt?



Basic concepts from

Angular momentum

@ angular momentum: L =r x p
@ time derivative of angular momentum:
L=ftxpt+rxp=rxF=M

@ conservation of angular momentum: if the moment of force

(torque), M is zero then L = 0 and L is a constant vector.




Basic concepts from

Uniform circular motion, centri

A 2

as _ are :ir:>As:r-A<p = Av=v-Ap

Ap  angle 27

ds As Ay _dv_ . Av L B

— a=—= m — =v- im —
V= dt  At—0 At At—0 At

= lim — =r- lim —/—
dt At—0 At At—0 At

2

—rw =vV-w=r-w

2
1%
Fcp:m-a:m-rwzzm-—

r

L:r-p:r~mv:mr2w:1w

where [ is the moment of inertia

o Euin = %mv2 = %m(rw)2




Basic concepts from

Circular motion, special case

Phase Angle

x(t) = Asin(zT”t) — Asin(wt)

Phase anglo
\ -
V= rw LT ml w0} fwe
a=VvVw = rw2
I“l’7V2



Linear and angular

correspondences

linear momentum

velocity

mass

Kinetic energy

p angular momentum L=rxp=lw

v angular velocity

m  moment of inertia
2

p

2m

rxv

w =
r2

| = mr?

L2
2/



Basic concepts from

Conserved properties

conservation laws?

some measurable physical properties do not change
o mass (m) ? and energy (E)
e electric charge (q)
@ linear momentum (p)

@ angular momentum (L)

“There is always a symmetry behind the conservation laws: conservation of

energy is connected to the time-invariance of physical systems.

bconservation of mass is not exact: nuclear fusions



Classical wave equati

model®

“see also in Wikipedia, Wave

@ elastic, homogeneous string stretched to a length of L

endpoints are fixed

p is the mass of the string per unit length

u(x, t) represents the displacement of the string at a point x

at a time t from its equilibrium position

only vertical movements are allowed (transverse wave,

longitudinal waves are not considered...)



Classical wave equat

derivation

F, = Foy — F1y = ki3 sin(a + Aa) —iﬁ;sin(a)

T2 Ty
no longitudinal contribution:

Fx = Fox — Fix =0, Tocos(a + Aa) = Ticos(a) =kl =T

at the end A, — 0



Classical wave equa

derivation

Ti-cosa= Ty -cos(a+ Aa) =T
0%u(x,t
Ty -sin(a+ Aa) — Ty -sina=m-a= pAx- ‘é(:;, )

Tp-sinfa+Aa)  Ti-sina 1 82u(x, t)

- —_ -_— . X - —_——
Tp-cos(a+ Aa) Ti-cosa TP Bl

1 0%u(x,t

tan(a+Aa)—tana:?p.AX, ‘é(:;: )

8uX—i—Ax Oux 1 82U(X, t)

0x ax 7p FAx Ot2



Classical wave equa

derivation

Ouxinx  Ouy 1 0?u(x, t)
Tox ok TV Tae
Te -G 1 Qulx.t)
Ax - Tf ot?
QPu(x,t) 1 D%u(x,t)
ox2  T/p o
QPu(x,t) 1 %u(x,t)
ax2 2 o



Classical wave equat

Solutions of the wave equatio

U(X, t) - C. ei(kx—wt+¢)

82u(x,t A2u(x,t 2
—g)(:; ) = —kzu(x, t), —612 —?)(t); ) = —wc—z u(x, t)
w

real solutions: u(x,t) = A sin(kx — wt + ¢) and

u(x, t) = B cos(kx — wt + ¢)

periodic solutions in time and space: x = x + 27” and

t=t+ 2% transformations do not change these functions,

k = 2{ (wavenumber), w = 27” (angular velocity)



Classical wave equat

traveling, interference, and sta

V(x,t) = A-sin(kx — wt) =

V(x+Ax, t+At) = A-sin(k(x+Ax)—w(t+At))

= A-sin(kx —wt) = V(x,t) =

KAX — WAt =0,  Viave = % —c

a+ 8

sin a + sin 8= 2sin(

a—f
y )eost—5—)

W(x, t)interference = A - sin(kx — wt) + A - sin(kx — wt + ¢) = 2A - sin(kx — wt + g) cos(%)

constructive (¢ = 0,2m, 4w, ...) and destructive (¢ = 7, 37,57 ...) interference

W(x, t)standing = A - sin(kx — wt) + A - sin(kx + wt) = 2A - sin(kx) cos(wt)

W(X, t)standing = A - sin(kx — wt) — A - sin(kx + wt) = 2A - cos(kx) sin(wt)



Classical wave equatio

traveling, interference, and standi

Constructive Interferance
(bright)

Destructive Interference
{dark)
Constructive Interferance
(bright)
Destructive Interforance
(dark)

" Constructive Interference
Screen {bright)
A two-point source interference pattern creates an alternating pattern

of bright and dark lines when it is projected onto a screen.




Classical wave equat

back to the elastic string ..., d

Boundary conditions: u(—a,0) =0, u(a,0) =0

un(x,t) = \/igsin(kz,,x)cos(wg,,t)
— kz,,:%f, wop = kopxc,n=1,2,..

uznt1(x, t) = \/igcos(kz,,ﬂx)cos(wz,,ﬂt)

u(x,t) = Y. caun(x, t) (general form of standing waves)
n=1

how to get the ¢, coefficients?



Classical wave equati

back to the elastic string ..., di

The un(x, t = 0) functions are "ortogonal to each other":
a

| un(x,0)um(x,0)dx = dpm,

—a

1, ifn=m
where 0,, = is the so-called Kronecker delta.

0, ifn#m
Any functions with the given boundary conditions can be
represented as a linear combination of the above sin and cos

funtions.



Classical wave equati

back to the elastic string ..., di

u(x,0) = Z cz,,fsm(kgnx) + Z cz,,+1fcos(k2,,+1x)

From the initial conditions:

Cn :_f: u(x,0)un(x,0) = %: cm_f: um(x,0)un(x,0)dx

The u(x, t = 0) function is given in the Fourier series form.

Form of the final solution:

t) =

u(x,
Z % sin(kanx)cos(want)+ > cz,,+1\[cos(kg,,ﬂx)cos(wg,,ﬂt)

n=1



Classical wave equati
light

light is electromagnetic radiation: W(x,t) = A-sin(kx — wt) = A-sin(5(x — ct))
amplitude, A, maximum displacement from the rest position

wavelength, A, the distance between two successive maxima

Electric
field
vibration

“

Direction
of wave
motion

Magnetic
field
vibration




Spectral radiance (kW - sr—*- m—2-nm~")

o Black-body radiation (Planck, 1900)

14 4 @ Insulated cave with a small hole: allows the
N study of the TD equilibrium of the EM

Classical theory (5000 K) radiation with matter.

@ The u(v, T)dv is the density of energy

stored in the dv frequency interval. For the

A
T e\
\

black-body radiation it does not depend on

the quality of material.

@ Model: EM field consists of standing waves,

2
///JQEL\\¥ n\/2=1L,n=1,23,... ED = number
0 =
0 0!5 1' 1!5 ; 25 3 of nodes in the dv interval: V(%})uzdu

Wavelength (um)

@ Classical theory: Equipartition theorem = each nodes has kg T energy, i.e.,

Vu(v, T)dv = V(%)kBuz Tdv = ultraviolet catastrophe
@ Wien's displacement law: A\pax = B/ T, where B is a constant

@ Planck: Energy of EM radiation is quantized: E, = n - hv, h = 6.626070040(81) x 10734

(Planck constatant)

3
Q@ — u(v, T) = (i—g),:’;%, if kg T < hv, then no EM waves with frequency v.
kT _3

e



@ Photoelectric effect (Einstein, 1905)

e e I
1]

- @ Diagram of the maximum kinetic energy as
=104
]
-

a function of the frequency of light on zinc.

@ Emission of electrons due to EM radiation.

Classically: E,; . .— ~ Eadiation

@ Experiment: 1. increasing intensity does not increase the Ey;, of electrons.
2. below a certain frequency there are no emitted electrons.

@ Einstein: EM radiation is a collection of photons with n X hv energies.



@ Heat capacity of low temperature insulator crystals (Debye,

1912)

At low temperature the vibration of atomic lattice has the

most significant contribution to the heat capacity of insulator

Debye

0.6 - 2 Einstein
s 4
crystals.

Debye: the energy of the vibration modes are quantized:

0 0.3 0.6 0.9 1.2 15 Ephonon:""hV

Phonones with hv > kg T are not excited =—> C ~ T3

o de Broglie (1924): all matter has wave properties, p = g = hk

doublk-
slit

electron.

Dam gun




Energy levels of atoms

H emission spectrum

the experimental emission spectrum of the H-atom

Narrow slit Thin nbbon -
of light S
+
‘& ) -
y I Screen or
- photographic

Tube containing Lens Prism plate
excited H, gas




Energy levels of atom

H emission spectrum ?

“wikipedia, Hydrogen spectral s

Visible
o o Wavelength, 1/nm
(=3 o o o o (=3 o o o o o
8 2388 ° 8 & & & 8 Balmer(n > 3)[1885]
| 11| | | | |

T T s (- %)em

. ||l Balmer - Lyman Rydberg(na > n1)[1888]

% Paschen 1 1

é = 109680 (— - —2) em™!
ni  n3

Brackett
Lyman[1906 — 1914]
Ritz combination rule: spectral lines include frequencies that are either the sum
or the difference of the frequencies of two other lines [ <= the wavenumber (

7 =1/X) of any spectral line is the difference of two terms

U = term(i) — term(j) |



Energy levels of atoms and

atomic emission spectra, characteristic foi

434 (4101

700 500
HydrogenJH
6678 05| 4021 4713 |e4rt

400

700 600 500
Helium $He
= 234 |o152 579 (677 5461 |s028 4358|  4078) 4047

700 600 500
Mercury “EHg

|

I

|
|

|

I
00 500

00
Uranium %%u



Energy levels of ato
Bohr's theory of the H-atom (

“wikipedia

@ existence of stationary orbits (fixed nucleus and circular orbit), no

electromagnetic radiation
@ frequency condition: AE = hv (h is the Planck constant, 6.626 - 10734J - 5)

@ angular momentum is quantized: ¢ = nh, h = h/27, where n =1,2,3,...

b AE=hv



Energy levels of ato

plausibility of Bohr's quantiza

Pphoton

— (Einstein)
Pparticle

— (de Broglie)
h
=

Pparticle

constructive and destructive interference

standing wave - stationary orbit
2rm=n- A

I/ 3 \
<7 o)
) e b
\ y
\ /
/) X
h C /
2rr=n- ™ A
Pelectron l’x'A ‘ N
h L
l=r-p=n-— P
2 .‘f



Energy levels of ato
Bohr's theory of the H-atom (

n?h?
Felectrostatic = Icentripetal v = > 5
m2r
2 2
e mev® ) 2p2
—— = ——— /in Sl units/ e? Me sz
4megr r _ e
4meqr? r
{=nh=r-mev n2h24re,
f = —
nh mee?
Vv =
r-me

Bohr radius, ag = 0.529 A, (n=1)
vacuum permittivity eg = 8.854187817620... x 10~ 12A2%s%kg ™ 'm~3
electron mass m. = 9.10938356 x 1073! kg



Energy levels of ato
Bohr's theory of the H-atom

Etot = Ekin + Epot

1, e
= —mev° —
2 dmegr
1€ e2 1 é
T 24megr  Amegr 2 4meor
1 e?

5 n?h24meo

2 4reg e
mee* 1

- 86()/72 n?

e MeVv

4regr? r
5 re

Mev® =
4megr?

m?h24meq



Energy levels of ato
Bohr's theory of the H-atom

AE:hu:h%:hcﬂ

AE = E,, — E,, = ¢

2\ 2 2
hc 8eoh?*ni  n3

11
s pl 1
PRl )

1mee4
R”_Eseohz

Ry = 109638cm ™ ' from experiment

=109737cm "

Energy, E

hv =E,-E,

hv = E,~ E,
— 21>

hv=E,~E,
— 3 1




Energy levels of atom
Bohr's theory of the H-atom

. op— Lmetc1  1y.-1
Bohr(ny > ny): 7= 5 8eoh2(n§ 2 Jem
Visible
o o Wavelength, 1/nm
(=3 o 9o 9 o (= =3 (=3 o (=] (=3
S 288 B 3 3 e g 9 Lyman(n = 1)
1 L 1| | | | | |
T T e
| ‘ | | Balmer Lyman PaSCheH(nl = 3)
@
3
5 Paschen Brackett(n; = 4)
<
Brackett

1 . " ..
On December 1, 2011, it was announced that Voyager 1 detected the first Lyman-alpha radiation
originating from the Milky Way galaxy. Lyman-alpha radiation had previously been detected from other
galaxies, but due to interference from the Sun, the radiation from the Milky Way was not detectable.

(Wikipedia)



Energy levels of ato

plausibility of Bohr's quantizati

Wave-particle duality: "It seems as though we must use sometimes the
one theory and sometimes the other, while at times we may use either.
We are faced with a new kind of difficulty. We have two contradictory
pictures of reality; separately neither of them fully explains the

phenomena of light, but together they do." (Einstein)

C:)\-I/ E:hV



Time-dependent Sch

some arguments for the Schrodi

of course there is no proof of it, it is a postulate

Free particle waves: W(x, t) = e/(k—wt)
w = E/h (Planck) k = p/h (De Broglie)
. 2 .
Dwle = —TEV(t) W n) = (LR 1)
0 72 82 p2
h—VW(x,t) = EV(x,t -
ihg V(1) (x,t) —o 5z V) =5 -V(x 1)
The energy is a classical free particle:
2
_
E= 2m
. 0 h? 02
/ha\ll(x, t) = ~ 5 B 5 V(x,t)



Schrodinger equation

particle in a force field, time-in

If the particle is not free (3D):

0 h2 0? 0? 0?
Ih(?tw( t) = { <6x2+8 57 2>+V()}\U(r,t)
A particular solution of the time-dependent Schrddinger equation:
W(r, t) = d(r)e it

9 —LEt

ihs O(r)e i = Ed(r)e iEt

Using the relations above we obtain the time-independent

Schrédinger equation



Energy levels of ato
Schrédinger equation for the p

?Atkins, part Il, chapter 8

R )
2m  dx?

Ekin + Epot = Etot

+ V(x)¥(x) = EV(x)

*V(x)  —2m(E — V(x))
axz 12 vix)
dy
dx?

y € {™,sin(kx), cos(kx)}

:_ka

Potential energy, V




Energy levels of ato
Schrédinger equation for the p

12 d?W(x)
2m  dx?

+ V(x)V(x) = EV(x)

No particle in the infinit potential area! W(x) =0if x < 0or x > L.

?V(x) —2mE V(o) = 0} { c=0
= <

= ———V(x)
ox? G v(L)=0 D=0or sinkL=0

2mE
k= 12 kL=nr n=(1,2,--)

W(x) = Ccos kx 4+ D sin kx

V(x) = Dsin %x



Energy levels of ato

Schrédinger equation for the

00,—00 < x< 0

Vix)=4{0, o0<x<lL 2mE
h2
0o, L<x< oo
E, =
— 2mE _
h2 L
> 2mE _ n?n?
TR I

Born probability interpretation: [°°_ W2(x)dx =1

n=m

12
n2h?

8mlL2




Energy levels of ato

properties of the solutions

@ Born probability interpretation: probability of
finding the particle between x and x + dx is

V3 (x)dx, i.e., [ W3(x)dx=1
@ if n 1 then E1
@ n =1, zero-point energy
@ WV has n— 1 nodes in the 0 < x < L interval
@ ground and excited states

@ with increasing mass the energy gap between

the levels, E,+1 — Ep, decreases

dx
o —
Probability
= lyl2dx
lyl?
X x+dx

p(r) = V*(r)W(r) satisfies the continuity equation, % + divj = 0, where

jr,t) = % [W* (VW) — ¥ (VW*)] is the probability current .



Energy levels of atom

Schrédinger equation for the pa

Born probability interpretation

/_: V2 (x)dx = 1 = W(x) = \Esin("%x)

nm

V(x) = Dsin(nTﬂ—x) =
L
e L dx = —dz
02/ sin?2(X x)dx = D2/ sin2(M x)dx = 1 n
oo L 0 L L onmw L pomo
/ sin(—x)dx = — sin(z)dz
o L nt Jo

D:\/* 2 sin® z + cos? z + sin? z — cos® z
L sin® z =

2
/ 2 nm —
W(X) i ( X) 1 cos 2z




Energy levels of ato

Schrédinger equation for the fi

i d*¥(x)

Toam ae BV
P*V(x)  —2mEiin
e~ e Y

2 2mEyn
K=

V(x) = A-sin(kx)

W(x) = A- sin(%rx)

_2r

A

2mEyi, =2m- %mv2 = p2

o (3 (&)

k

P =

-

A=

Tz



Energy levels of ato

Schrédinger equation for the

v 82
v 4
0, x€ (0,L1) Ay € (0, L2) -
(o) = | s A
0, otherwise

x\_"

Particle
confined
to surface



Energy levels of ato

Schrédinger equation for the p

B[0PV 9PW
—— =+t =EV V(x,y)=F(x)-G
om { Ox2 + dy? (x,y) (x) - G(y)
separation of variables
Y = F(x) - G(y) P 1 PR
5 - 2m F(x) dx?
Q:Gydl:(x) B 1 d26G(y)
ox2 dx2 - =E,
2m G(y) dy?
ﬂiF()dZG(y) 2 2
a2 a2 {deFiX) = BeF(x)
2 d?F(x) 26y y
- {G(y) 0 F(x)dy—z} = EF()G(y) I
2m  dy?

h? 1 d?F(x) 1 d?G(y)
Toam | F() a2 Gly) dy?



Energy levels of ato
Schrédinger equation for the p

2 dPF(x) K d?G(y)

_g dx2 EcF(x) _a dy? - EyG(Y)
_ nih2 E n§h2

8mlL2 i Sng

2
F(x):’/zsin%x G(y)_ML—smf—y
V(x,y) = F(x) - G(y) = 4 -sin 27y - sin —nzﬂ-y

Y= Y=\ L L Lo

S AN AN L
- - L1 Lz 8m




Energy levels of atom
Schrédinger equation for the pa

x,y) = - sin X - sin ——
2 Iafis = L
ny \ 2 n2\2) h?
e ={(3) "+ (2) } 5m
1 2
V.

consequence of symmetry, L1 = Lo = L

[4
V(x,y) = Yl - sin anﬂ—x-sin nzTﬂ—y

h2
8mlL2

E(ni,n2) = (n% + ng)

E(1,2) = E(2,1) but the wavefunctions are different

degeneracy: same energies different wavefunctions




Energy levels of a

Schrédinger equation for t

degeneracy is the consequence of symmetry

|‘//11‘2 |'//22‘2
/\i ; iy y
X X -




Energy levels of atom

Schrédinger equation for the pa

R (0?V 92V By

2m | Ox2  9y? = 0z

Ll {7 N f} — BV W(x,y.2) = F(x)- G(y) - H(2)

W(vavz) = F(X) G(y)H(Z) = \/E

E=E +E +E :{(

n3m

. mm . Nom .
+SIN ——X-SIn ——y -SIn ——2Z

Ly L3

ns\*| n
L3 8m




Energy levels of atom

Schrédinger equation for the pa

degenerate case: cube Ly = Lo = L3 =1L

8 . mm . nom . nam
V(x,y,z) = F-sme-smTy-smTz

h? h?
oo = ()

E(m, n2,n3) = (n} + n + n3) 8mV2/3




Postulates of Quantu

postulate |

?P. Atkins, J. Paula, R. Fried

The state of a quantum-mechanical system is completely specified
by the so-called wavefunction, W(r, t), that depends on the
coordinates of the particles and on time. W*(r, t)¥(r, t)dxdydz is
the probability that the particle lies in the volume element

dT = dxdydz located at r at time t.



Postulates of Quant

postulate |

properties of W(r, t)
@ continuous
e contiguously differentiable (if the V/(r) potential is realistic ...)

o finite (square integrable for bound states, i.e.,

(VW) = [ |W[2dT < 0)



Postulates of Quant

postulate Il

To every observable in classical mechanics there exists a

corresponding linear, Hermitian operator in quantum mechanics.



Operators in Quant

correspondences
observables Q operators
X X multiplication by x
position
r 4 multiplication by r
V(x) V(%) multiplication by V(x)
potential energy N
V(r) V(f¥)  multiplication by V(r)
Px 5 —ihg
momentum . . 5 5 5
p b —il(exg; +ey5; +e:57)
inetic energy . 2 2 2 5
K2 o o
K K —a(oe t o2+ 52)
total energy E A T+V




Postulates of Quantu

Bra—ket notation

e Dot product of two wavefunction: (n|y)) = [ n*¢dr

@ For systems with more than one particle: n = n(ry,ro,...),

Y =1(r1,r2,...), and d7 = dxidy1dzidxodyrdzy . . .

o — (nly) = (¥lm)*
o Operator A transforms ket function [¢) to function |n):
) = Aly)
o Matrix element of operator A: (n|A|y)) = [ n*Apdr = (n|Ap)
o — (Anlw) = (wlAn)* = [ (An) var
o An operator is called Hermitian if (1;[2[v;) = (Q[w;).



Postulates of Quant

postulate I

In any measurement of the observable associated with the operator
2, the only values that will ever be observed are the eigenvalues w;

which satisfy the eigenvalue equation Q[W;) = w;|V;)



Operators in Quantu

linear Hermitian operators

2 92
{_zh_m% + v} W(x) = EVW(x) AV(x) = EW(x)

eigenvalue equation Q1) = wilv;), i =1,2,3,...

If 1; # 1 but w; = wj, then this eigenvalue is degenerate.

An operator is called linear if Q(|av) + B|o)) = af2|y) + 52 ).
Qv is Hermitian, i.e., (;|Q;) = [ Qy;dr and

Cusly) = [ () vy

All eigenvalues of a Hermitian operator are reall!!



Postulates of Quant

postulate IV

If the state of the system is described by a normalized wavefunction
VW, then the average value of the observable corresponding to the

operator € can be calculated as (w) = (V|Q[V)

e Expectation value of operator A: (¢)|A[1))



Postulates of Quant

postulate V

The wavefunction of a system evolves in time according to the

. e . . . 8\|1( ,t)
time-dependent Schrédinger equation: AW(r, t) = Iha—;



Operators

required properties: measurabl

postulate lIl: QW;) = w;|W;) = (V|QV;) = w;

(we assumed that W; is normalized, (V;|V¥;) = 1)

eigenvalue equation its complex conjugate
QU = wv (VQV)* = w*
(V[QV) = w(V|¥) (QV|v) ="
VQV) =w =  (VQY) ="
-

& is hermitian!

w is real if w = w*.



Operators
the hamiltonian, H = K + V/,

observables

operators

position

potential energy

momentum

kinetic energy

total energy

multiplication by x
multiplication by r
multiplication by V/(x)
multiplication by V/(r)
—ih

—ih(exd + ey 5 +e:5r)

n? 92
T 2m ox2

h? (82 o 5?2
_%(axz + By? + a?)

T+V




Operators
the Hamiltonian, (2= k—l— \7,

V(x,y, z) is hermitian; it just stands for a multiplication by the potential

function

n*-V*-Wdr (V= V" real function)

(n|V|w) =/n*\‘/wT=/n*-\7-\udT

= / V*.n*-Wdr = (Vn|¥) (multiplication is commutative)




Operators

the Hamiltonian, (2] = K+V

@ p = % dlx and the wavefunction must vanish at infinity

@ recall that, (u-v) =u' -v+u-V/, therefore, fu-v =u-v— [u -v

(npx|V) =
oo oo oo
h dv h Bl h dn™ hodn\*
- / n* —dx [fn*w] - = / T wdx =0+ / <7—") Wdx
i dx i oo i dx i dx
— oo —oo —oo

. 1 1 1 N
(R W) = —— (n|p2|W) = — —— (Bxn|Bx|¥) = —— (BZn|W) = (Ryn|¥)
2m 2m 2m




Operators

properties of hermitian operat

If €2 is a Hermitian operator then the eigenfunctions with different

eigenvalues are orthogonal.

Qu; = w,-\ll,-} /take its complex conjugate

1

QvF = w,-\ll;"} V; -/ then integrate

QU; = w;W; ] WS-/ then integrate

(Qv|v)) = /wjﬁ*\u?dfzw,-/ij?dr
= (w,-—wj)/\ll;‘\lijd7'=0
(V| Qw;) :/w;‘ﬂwjdrzwj/w;‘wjdr

(w;#wj-! )ZI\U?\UJdTZO




Operators
properties of hermitian operat

If €2 is a hermitian operator then any linear combination of

degenerate eigenstates/eigenfunctions is also an
eigenstate/eigenfunction with the same eigenvalue.

Q\U,‘ = w;V; Q\U,‘ =wV;
R and wi =wj =w p
QU; = wv; QU; = Wy
V= C,‘\U,' + Cj\Uj
Qv = Q(C,‘W,' + Cj\UJ') = C,'QW,' + CJ'Q\UJ'
= cwV¥; + CJ'UJ\UJ'
=w(qV; + qV;)

=wV




Operators

properties of hermitian operat

If €2 is a hermitian operator then any degenerate
eigenstates/eigenfunctions can be orthogonalized.

QU; = w;V; QU; = wV;
and w; = wj = w

QU; = wV; QU; = wy;

¢ =V;
¢j = \lfj + cV;
/¢7¢jd7:/w7(wj+cw,)df

= /\Ilf\IdeT—l— c

With ¢ = — f\U}"‘»Ude the functions become orthogonal, i.e., f(j)}“d)de =0




Operators

postulate Il and IV

@ In any measurement of the observable associated with the
operator €2, the only values that will ever be observed are the
eigenvalues w; which satisfy the eigenvalue equation
QU =wiv; = [WQUdr = w;

o If the state of the system is described by a normalized
wavefunction W, then the average value of the observable
corresponding to the operator €2 can be calculated as

(W) = [V Qudr



Operators

postulate IV

Any state of the quantum system can be obtained as the linear
combination of the eigenstates of any €

W) =37 cilVi), g = (Yj|¥) = [Wivdr
Qci|V;) = qui| ;)
(@) = /w*ﬁwdT:/Zc,*mec,w,-dT: /Zc,*W?Zc;w;W;dT
- /zi:c,*w;r,w,-w,-dwr/Z:Ej:c,*w;‘cjijjdf

J#i
= Z {‘C,'lzw,‘ . /\Uj“»ll,-dr} + ZC,-*CJWJ/W?WJG'T
i i
J#i

=> lcilPwi+0
i



Operators

postulate IV

— c,-2 is the probability to find the quantum system in state /.
QqV; = cwV;and [VWdr=1 =, |¢?=1
1:/W*Wd7:/Zch?ZC[\IJ;dT
:/Zc,*w;‘c;wfdr+/zc,*w;‘cjwjdr
i i

#i
:Z{|c,|2-/w;*w,-d7} +Zc,.*cj/w;fwjdr
i ij
#i

=> lel*+0



Operators

commutator

ABVY = BAV (commutative)

ABV % BAV (non commutative)

let's introduce the commutator for two operators [A, B]

(A.B] = AB — BA
[A,B] =0 (A and B commute)

[A,B] # 0 (A and B don’t commute)




Operators

commutator

if two operators have the same set of eigenfunctions they commute, i.e., [ﬂ, é] =0

AV=a.W and BY=bH-V
[A, Blv = ABV — BAw
= A(bW) — B(aV)
= bAV — aBV
=b-a¥V —a- bV

=(b-a—a-b)W=0-¥ (numbers commute)



Operators

commutator

@ for compatible observables [A, B] = 0

@ for incompatible observables [f\, B] #0

Heisenberg’s uncertainty principle (derivation is not discussed)

1 -
AA-AB > 5’/\V*[A,B]\Udr

AA-AB =04 0

standard deviation:

o = = ()2 = \/o2) — ()2



Operators

commutator

@ The eigenfunction of momentum is completely delocalized (periodic boundary

conditions): ¢1(x) = \%L . eikx
probability of finding the particle between x and x + dx

B00) - b1(x)ab = | dx

@ The eigenfunction of position operator is completely localized, but has indefinite
momentum: ¢(x) = §(x — a)
A possible representation of the Dirac-delta:

1 o elk(x—a) dk,

P

where k is proportional to the momentum: k = p/h

Xp(x) = ap(x)



Operators

commutator
d . .
px = —ih— and % = x (multiply by x)
dx
[, K1V (x) = BefW(x) — 2 V(x)
_ _ihd[x\ll(x)] n Xl_hd\ll(x)
dx dx
= —ihW¥(x) — ihx d\II(x) + ihxw
dx
= —ihV(x)
[Bx, X] = —ikl (I is the identity operator)

Apy - Ax > %‘/\U*[ﬁx,)’i]\UdT‘ - %‘/w (—ihi) wf‘ - %m - i|‘/w*w¢’ - %h

Heisenberg's uncertainty principle: more precisely the position of
some particle is determined, the less precisely its momentum can be

known.



The quantum harmo

Potential energies are frequently P'u'lemialenergy
m
approximated around the minimum by a ’ O%kxz
quadratic term: e.g., in most of the cases
the vibration motion of two atoms of a

diatomic molecule can be well-described by

Internuclear separation x

a harmonic oscillator,

2
V(R) & V(Re) + 3 55 lr=r. (R — Re)?.

2
Here R is the equilibrium distance, k = gT‘z/“?:Re is the spring constant, and

R — Re = x

h? d?W(x) 2mE
Tom a2 + V(x)¥(x) = EV(x) A= 2
R d?W(x) 1 , 2 mk
“om a2 + Ekx V(x) = EV(x) ot =3
d>V  2mE mk ,
B T VT Y=
d2w

— +(A—a?P) V=0

Let's try to find an asymptotic solution when x — oo



The quantum harm

asymptotic solution, x — oo

d2v
oz T A=A Ww=0
A < a?x?
PVoo = a?x%V
dx?

ono:e7 2

d\uoo _LXZ
= —ax-e 2
dx
d?V

dx?




The quantum harmo

V., X (a power series P), (So

axz i H
v=e"2 > apd = WP
j=0
d2v _ d2W P+2dw°° £ d2p
dx2  dx? dx dx ° dx2
dV¥ _ax?
ot —axe” 2
a2V, ax? ax
e =a?x?e” 2 —ae "2
I
d2v ax® dP  d?P
— =e 2 {azsz—aP—Zax—-‘r—}
dx? dx  dx2
d2v _a® dP  d?P
W+()\7a2f2)\ll:e 2 {()\fa)Pf2axa+ﬁ



The quantum harmo

Voo x (a power series P)

d2w s s dP PP | _oc
F-I—()\—ax)\l’: A—a) P —2ax o + o2 (€ 2 =0

oo
— E: osd)
P = ajx
j=0

dP =, . i1
- = ZJanj
dx =

d2p el . i 1 = j

5 =2 iU Dad 2 =Y 4+ Vi T = DG+ 20 + Dajgad
X j=0 Jj=0 =

d?w

o Tt =

> H Oth
S { A-a)a - 20j3 + G+ +2aj fxe”F =0
j=0



The quantum harm

the power series solution

Z U+ 10+ 2)ajs2 — a(2j +1)a; + Aaj] ¥/
Jj=0
to hold for all values of x, the coefficients must be zero
0= (J -+ 1)(_] -+ 2)aj+2 — a(2j -+ 1)aj =+ )\aj

a2+ -
TG+



The quantum harm

the power series solution

a

2
— ax7
Because W =e¢~ 2 > °

one must terminate the power series

let's terminate at j = v + 2,

ay+2=0
a(2v+1)— A
v =0= "
vtz vrD(v+2)™
A=al2v+1)

higher order terms will be zero as well

xd
j—0 @jx/ — 0o as x — o0

2mE
A= 2
v mk
a=—
h
2mE v mk
2 = T(Zv —+ 1)

E= 1\/ih(2v—|—1)
2V m

1
E = hw(v + 5)’ v=0,1,2,...



The quantum harm

Hermite polynomials

W(x) = Ny Holy) e %

@ N, is a normalization factor

@ Hy(y) is a Hermite polynomial
@ y=.ax

@ recursion, Hy4+1 —2yH, +2vH,_1 =0 ;

H,(y)

[ N BT S R O Y

1
2y

49%-2

8y®— 12y

16y* —48y? + 12

32y° = 160y° + 120y

64y° — 480y* + 720y — 120

)

E-
: A
Eg 7
P
- N 4
£ - ()
~
E; a W,(x)
E. " W

uw

0
T x




Particle on the ring
de Broglie + classical physics

Second — First
circuit circuit
s 7 3 P
=
2
k3
5 Second
‘S circuit
3
=0 B ¢ 2
First™
circuit
N7
P
h h
m p=— J=r—
A A
2rr=mp-X my € 0,£1,£2, ...
z component of angular momentum:
ml)(h
J.=rp J: = = mgh
27r><
J2 2 m2h?
Eot = =, | =mr Eror L

21’ Y



Particle on the ring p
Schrédinger equation, V=0

2 2 2
L A

2m | Ox2  0Oy?




Particle on the ring

polar coordinates; plane, cons

y
X =r-cosg
y=r-sing
sin ) r2=x2 42
Qo Y= tan1 %
0|cos ¢ X (tan_lx)/ = ;
1+ x2
f(r,) = f(r(x, ), #(x,¥))




Particle on the ring

polar coordinates; plane, cons

Op 1 -y —y —singp

f(r,p) = f(r(x,y), p(x,¥)) P e ey Rl Sl
g:g& gaﬁ Op 1 1 X cos ¢
O OrOx = Dp Ox Gy 140 x P

of _ofor  orop
dy  or dy  O¢ Oy
of  Of —singp

or or

ifr:constthengza—yzo a—aw B
of _ Of cosp
of _or oy 5 = Gp 1
Ox ~ Oyp Ox
of _ of dp

dy 9y dy



Particle on the ring

polar coordinates; plane, cons

of  Of —sin of  Of cosp
—=— 2 = g(r(x,y), 0(x.y)) v = Ba = h(r(x. ), (%))
Ox O r dy O¢ r
Pr_ 05 _ 05 or 95 0 f 05 05 or 95 oe
x2 9x  Or Ox dp  Ix dy2  dy  Or By dp Oy
o — sin
_ 0% oy 055 T 0y _On 00 P E g
dp  Ox dp Ix T 9p Oy o)t} oy
8%f sing Of —109sinp , singp 0%f  cos Of 10dcosp,, cosyp
= (55 S e N = (e 2 L S EOEE) (8
Op? r Op r Oy r 0p? r Op r Op r
sin2 o 92f + L ososin of cos? p O*f n 1( sin ) cos of
= — — = —(—si —
r2 8(,022 r2 ¥ waw r2 8@22 r2 ¥ s0&p
2 21
Ix2  dy2  r2 9p?




Particle on the ring

polar coordinates; plane, cons

2 2
_h v +87\IJ — EVy
9x2 | ay2

02 92 1 P
Ix2 " By2 12 92
n? d*V(p)
- — EV
2mr2  dp? ()
d>v _2IE
(p) _ 2E (o)

dp? TR

V() = Aeim®
dZW(W) — ZA imgp _ 2,EA imp@
dp? h2
2IE
2 _
T e
E— m2h?
21



Particle on the ring

polar coordinates; plane, cons

Y(p) = Aeimew cyclic boundary condition:

o . V(p+2m) = W(p)
Born's interpretation

V(p+2m) = %e""’f(“"*'z’r)

oo 271'
V(o)W (p)dyp = 1
/_oo (P)Vle)de L imi(e) glim)2m

27 vV 27

Ae~imee peimed, = A221 =1
/o v = W(p)(~1)>™
1 .
V(p) = —=e"™? 1=(-1)2" & my =0,41,+2,...
\/277_‘_ k] k] )
mfﬁ2

2/



x = rsinv cos ¢ r=vx2+y2+22
z

y =rsindsingp 9 =cos 12
r

z =rcos? o =tan"1 Y
X

Volume element
dV=rsin® do do dr




Spherical coordinate

the Hamiltonian in Cartesian ¢

P
+o—+

=~ “amlaa taztaa) TV ’

V2=V.V=A laplacian ( D
0 0 0

V=e.— +ey5 +e,—

Ox 0z
02 02 02
2_ v o 9
V= Ox2 + Oy? + 0z2
h2

— " (2 Y
A= 2m(v)+v



Particle on a sphere

the Hamiltonian in spherical ¢

without derivation:

0?2 290 1 0 1 9?

2
=+ 0 952
v o2 Trar T sm19619( " 819) r2sin? 9 0

Supposing that r = constant

I L Rey9,0) = EW(9, )
2m 790 - 790 bl

7 1 &

. 1 9
here A2 = 9 -
where A = aa i Vgg) sin2 9 02
2

separation of variables: W(9, ¢) = ©(19) - d(y)




s.iﬁ 0 '"1985;}) sm12198222¢ - _%E@q’
Sirﬁ%(sin ﬁ%ﬂ%?—; + %E@d> =0
multiply by Sglﬁ
S'gﬁ 8819( ﬁg—(gﬂi 222 + % sin29) = 0
Here %82_<p2mUSt be a constant!

It is supposed to be negative to obtain a periodic solution.
1 9%

ooz = M= e=em
e



sinY 0 00 1 9% 2IE

— 2 —_

6 ") oo V=0
182 2

ooz M

0 00 2 2IE . 5 o
smﬁaﬂ(smz‘}aﬁ) @+—sm 0 =0
8{8 B 0
|ntroduceC—cos19:>% 819(9(__5 193(

please, note that sin®¢ =1 — (2

(1= - A5 - me+ 22 - e =0



9’0 00  [20E  m?
2 L —
(1—4){842 -2 8(+{h2 _I—CQ}G} =0

This equation can be solved using the
O(¢) =(1 - C2)|m’“’|/2 Z ¢, ¢" Ansatz.
r=0

To obtain non-singular solutions = 00 +1),

where ¢ is an integer ¢ > |mg|.

(1_42)[?92? 2050 {(“1) 1T§<2}@]:°

associated Legendre differential equation

spherical harmonics Y7, (9, ¢) = ©¢m, (cos(¥9))e ™



R? 1 4,
_%ﬁ/\ W,m4(197 90) — EYZ,mg(ﬂago))
h2
E=((t+1)7, (=012...

me=—0—((—1),...,0,....0—1,¢

every energy level is (2¢+1)-fold degenerate

¢ - orbital angular momentum quantum number

my - magnetic quantum number

1PN Yy, (9, ) = B2+ 1) Yo m, (9, )



L:rxp@[:ﬁ_?xv
]

A o h O

L, =Xpy—ypx = 7%

A hO® )
L,®(¢) = 00 = hm®(¢) = &(¢) =™

From the periodic boundary condition:

®(¢ + 27) =0(¢), m = 0,41 +£2,+3, ...

L2:Z§+z§+z2:_hz{

z

1 0 9 (sing2 0 )+ 1 9
1 —_— =
sin1 9 A’ sin? 9 0p?

(=0,1,2,...

[2Y) m, (9, 6) = B20(L + 1) Yy m, (9, ©) =
m=—0,—0+1,...,(0—1)¢



Spherical harmonic

wavefunctions

L my Ye.m, (0, ¢)

0 0 (&)

1 0 (%)% cos 1
+1 T (%)%sin Yetie

2 0 (%)%(3&5229— 1)
+1 ¥ é—i)% cos ¥ sin Je*i¥
+2 ¥ (%)% sin? Yet2iv

Yi,-1— Y11 Y1+ Vi

real combinations: py, =

vz T



12 e?
{ v - }W(r,ﬁ,(p):E\U(r,ﬁ,cp)

2u 4meqr
10, ,0 1 9 0 1 92
2 10,0
_r28r( or +r2sm19819(5m19819) r2sin2 9 02

zzia(za /\2
r2or* Or



Separation of variables: W(r, 9, @) = R(r)Ye,m, (9, ¢)

h? 0, ,0R e?
oz { Ve g PO+ RO Yo, | -

RYy.m, = ERYj.m,

2pur? Amegr
h? d ,0R e2

XYy —(r? L - i
2,”2{ e (P 50) + RINUE+1)Y,, } 4W60rRYg, , = ERY m,
B2 (0, ,0R 2

o {3,( 3, ) T R(NUC+ 1)} - 47TeorR_ ER

The solution can be obtained using the Sommerfeld's polynomial

method.



The results:
1 2r Amregh?
Ri(r) = Ze~"/PPL(ZS), wh =n—0p,0< /<
() e L ( o ), where rp = n s < n,
n=1,2,... and P!(x) are the so-called Laguerre polynomials.
4
mee
Schrédinger: E, = — > —
g " 8e2h?n?
mee*

Bohr: E, = _—86(2)/72”2



Hydrogen atom

radial wavefunctions, Laguerr

\U(rz 197 (10) = Rn,e(r) Yf,mg (197 (P)

n Rn,e

1 2(£) e

2 7 (%)i@-g)ef"/z

2 F (8)7 e

3 e (%)f (6 — 60+ 0%)e2/2
3 iz ()7 o= oo

: s () e

_ 2Zuér 2Zr
e= 4megh?n

na’

= where a =

2
470" i the Bohr radius



Hydrogen atom

radial wavefunctions, Laguerr

hydrogenlike atomic wavefunctions: W, s . (r,9,0) = Ry e(r) Ye,m, (9, ¥)

X
El

Yé,m[

n V4 my
1 0 0
2 0 0
2 1 0
2 1 +1
2 1 -1
3 0 0

N

~~

vIN [

- ~—rr
Niw

o [N

N TN N
~—r

[ [ [ L
JTRTIPY
LN wIN wIN

(6 — 60+ 0?)e /2

L

v N

N—"

N
2
W

()

(&)

(%)% cos v
(%)% sinde’?
(%)% singe~i®

(&)

— 2Zpe?r _ 2zr
0= 4mweoh2n ~ na’

where a = “T=4" is the Bohr radius



Hydrogen atom

atomic units, fixed nucleus

2 2
{—h v2__°© }\U:E\U

e

2me dregr

x — A/, y = )\y', z =\

o2 19
aXZ - )\2 ax/2

r=vx2+y?+z22=r— \/()\X’)2 + (Ay)2+ (A2')2 =\




Hydrogen atom

atomic units, fixed nucleus

R e e’ _ 1oy 1 r_ ’

{—2meVe—4ﬂeor}\ll—E\ll Ea{—E(Ve) - V' =&v

4 A

B h2 (V)2 — e? v — EV _l(vl)z_l}w,:g,w,
2meA2 " € Amegr' M B 24 € r'

select A to fulfill & = g

2 e? ’

—— = ——— = E, atomic units for distance and energy:
meA2 4meg) a &y

dreoh? .
U A= :;EZZ = ag, Bohr radius

1 1 :
Ea{*i(vé)zfp}wl:‘gwl E,= Lz,hartree

meag



Atomic orbitals

shells and subshells

atomic orbital (AO) - one electron wavefunction (V,, ¢ m,)
quantum numbers:

@ n - principal

@ ( - azimuthal (orbital angular momentum)

@ my - magnetic



Atomic orbitals

shells and subshells

@ a shell consists of AOs with the same principal quantum

number n (K, L, M, N, ...)

@ subshell: orbitals with the same n and ¢ quantum numbers

(s, p, d, f, g, ...subshells)

for example: n=1,2, and 3




Atomic orbitals

s orbitals, £ =0, m; = 0

a

3
o W, —c- (;) 2 Po(o)e /2 (A)F

Ni=

@ the angular wavefunction is constant, Yp o(?9, @) = (ﬁ)

@ spherical symmetry

@ the P,(0)s are Laguerre polynomials, and their roots give the number of nodal

surfaces

Node

2s



Atomic orbitals
p orbitals, £ =1, my; =0, £1

1

)2 cos ¥ = pcos I (p) = zf(0) = Vp,

1
2 . i
) sinde'?

> sinde™®

Niw

)\
(3o

Niw
Ni=

<
R}
+
3
Il
2~ 8- -
E ES S
7 N
v [N
N———
Nw
o] [ee] S~
Plo Flo Flw




Atomic orbitals
p orbitals, £ =1, my; =0, £1

to get rid of the complex variable we take linear combinations of W, ; and V,_,

1

3
1 Z\2 3\2 : .
Vp, =Vp + V¥, = —= (*) ’ 0e9/2. (8—) *sing - (e +e7'%)
U

V24 \ a
1 [Z\3 32
Vp, =Vpy =Wy, = NeT (;) 0e /% (87) sing - (e —e™'%)

osind - (e'? + 7)) = gsin® - 2cos p = W), = xf(0)

osin® - (e'? — e¥) = gsin9 - 2isinp = VY, = yf(o)




Atomic orbitals
p orbitals, £ =1

[l



Atomic orbitals
d orbitals, £ =2

similarly to p orbitals we make linear combinations of complex WFs

to get real functions

1
dxy = ny(r) dxzfyz = §(X2 - yz)f(r)
dyz = yz£(r) dpr = \/;(322 — A)F(r)

dpx = zxf(r)



Atomic orbitals
d orbitals, £ =2




Spherical harmon




Atomic orbitals

shells and subshells

atomic orbital (AO) - one electron wavefunction (V, ¢ m,)
quantum numbers:

@ n - principal

@ / - azimuthal (orbital angular momentum)

@ my - magnetic

@ ms - spin



spin

an intrinsic angular mom

Stern - Gerlach experiment(1922)

5o .

A beam of silver atoms. Inhomogeneous magnetic field!



spin

an intrinsic angular momentum o

Y M-rfw‘wv/% thu;/ho/ ﬂt@ﬁ[w
}M,M . .;., /e. 192/) uu;.umu.wua k.g» o

Kicon= fo e




spin

Magnetic dipole moment, relati

Classical description @’

m = S/n, where | is the current in an electric current loop, S is the
surface of the loop, and vector n perpendicular to the loop.
If the current is produced by a single charged particle | = ¢/ T,

where T is the periodic time of the motion.

| = 2memre . pe __emp el
T 2menrT T 2menmr T 2menr? T 2menr?
2
_ remel __ el
m= 2menr? T 2me

Torque (moment of force): r x F=m x B

Force on a moment : F =V (mB)



spin

an intrinsic angular momentum

Stern - Gerlach experiment

@ to confirm the Bohr-Sommerfeld theory

(fE(p,r):const. pdr = nh)
They assumed that for Ag atoms L=1. (We know that it is

zero [1522522p03523p®3d104524p04410551].)
o If L=1 then the beam should split into three components.
e Ag atoms are in £ = 0 state = no splitting

@ the spatial orientation is quantized




spin

an intrinsic angular momentum

Stern - Gerlach experiment(1922)

Uhlenbeck and Goudsmit - spin(1925): An internal angular
momentum of the electron () produces on additional

magnetic moment:th, = —8kES, where g is the g-factor, and

g = e—fj is the Bohr magneton, e is the positive unit charge.

no spin in non-relativistic quantum mechanics
ad hoc introduction by Pauli
it occurs naturally in Dirac's relativistic QM(1928) (g = 2)

correction from quantum electrodynamics (1948):

g = 2.002319



spin

an intrinsic angular momentu

The intrinsic angular momentum (S) can be characterized by the eigenvalues of
the S, and $2 operators, where 5% = §2 + 52 + 52,

S0 =hs,o

$2%0 = n?s(s+1)o

The possible values of s are 0, 2 3 ,%,2, ..., whilemg=—-s,—s+1,...,s

@ fermions like electron, proton, neutron (half-integer

: _ 135
spin, s =13,3,3,...)

@ bosons like photon, W bosons,*He (integer spin,

s=0,1,2,...)

The eigenvalues of spin for an electron:

~

S,0 = :I:ga, frequently used notation: §za = %a, §z,3 = —E,B



spin

Wave function of the particle

The wavefunction of the electron must be extended by the spin: E.g., the

wavefunction of the electron in the H atom:

wn,é,mg,ms:% (r,0,0) =Vnem/(r,0,¢)o
Wave functions with different spins are orthogonal to each other.

. wn,f,mz 0
Vector representation: W, ¢ m, o0 = s Waem, B =

0 wn,é,mg



spin

Total angular momentum of an

The x, y, z component of the total angular momentum of a
particle is the sum of the orbital and spin angular momentums:
JA,-:[,-—I-gi,i:x,y,z. JA2:J;2+J:,2+JAZ2

In the non-relativistic case (the speed of the particles are negligible
with respect to the speed of light) the 27,825,121,
operators commute with each other and with the Hamilton
operator, i.e., we can find a common set of eigenfunctions for all
these operators. These operators belong to the compatible
measurable physical quantities.

In the relativistic case: only JAZ, J, and A commute with each other.



spin

Magnetic dipole moment in Q

In general m, = g2mJ
@ for the orbital angular momentum of the electron: m = 2meIA. 75|“_
ie, g =1
@ for an electron without orbital angular momentum: fm = —2“TB§, ie.,
gs =2
@ in general the Landé g factor should be used: m = —%j, where

g = ng(j+1)—;J(z’fr+11))+€(€+1) + gsi(j+1)+;§?;r+11))—é(€+1)

@ abs. value of magnetic moment: M = g;\/j(j + 1)us



spin

Zeeman effect

@ In magnetic field the Hamiltonian contains an additional term:

A

Vmag = —MB, where B is the magnetic induction vector.

@ Supposing that the magnetic field is oriented along the z axis,
Vinag = —th,B, = £££ ], B,

@ Due to this term the energy levels depend on the j, quantum

numbers (Zeeman effect).



e total angular momentum quantum number: j = |{ £ 5|, e.g.,
¢ =0, s orbital, j =
£=1, porbital, j =
¢ =2, d orbital, j =

Nlw N NI

@ The energy is slightly j-dependent (fine structure of the H

atom: splitting of the spectral lines of atoms due to electron

spin)
£~ pcla? [1+a2 < n 3)]
Jjn "~ T Ty o o i A
2n n“ \j+s5 4
2 . .
where a = 4W:0hc = ﬁ is the fine-structure constant



@ j-dependent relativistic correction: spin-orbit splitting

o With respect the resting frame of the electron the proton is
orbiting around the electron and producing a magnetic field B,
B=-%vxE

e From a brief derivation (sherically symmetric pot.,

V(r) = V(r)) the magnetic field is: B = el 19U(r))

(U(r) = eV/(r) is the pot. energy)
@ As the energy shift is AEy,.; = —m;B, and m, = —2“735;

then AI—AImag = %h,i’:g’cz %%&r)ﬁ -8, where the 'Thomas-half’
(

is also included (Llewellyn Thomas, 1926).



spin

Lyman alpha transition in hydr:

B=0 B#0 The slitting of energies according
+312 . , o
.., tothe jvalues is a relativistic

PS,’Z -1/2
5, effect.

P I ‘ ¥
+1/2

S —

12 l s

The Zeeman effect splits the energy levels of the H atom. As the
value of g; depends on the j, /, s values the extent of the splitting

is different for the energy levels.



Z

cyclic permutations
[02,0.] = ind,
|0y, 2] = ind.

2.0, =0, [0, =in,

>

~

The angular momentum can be

visualized as a vector with length

fi\/€(£ + 1) rotating around the z

axis.

(b) !

+1



cyclic permutations ‘
[5x, 8] = ihs;
(32, 5¢]) = ih3,
[3,,8;] = ih3,

(82,8] =0 s 2



triplet combinations:

a(1)a(2)

73(a(1)B(2) + a(2)8(1))

singlet combination:

L (a(1)B(2) - a(2)5(1)) A\m§ B(1)5(2)

multiplicity: 1 me,\

multiplicity: 3



iz
J=L+8S
[J1=+j+1) %

j = total angular
v momentum quantum

j=3/2 j=1/2
number = 3/2,1/2,-1/2,-3/2 mj= 1/2,-1/2

In general, if J = J; + J, —

J=lh—RLlh—Rl+1... 1+



Selection rules

Time dependent perturbation

@ Let's suppose that the stationary system is effected by a small
time-dependent external force (perturbation, K(t)):
Loy (Flo+ R(t)) v=0

@ The eigenfunctions of the unperturbed Hamiltonian are V,,

AoV, = E,V,. At t = 0 the system is in state ;.

@ Due to the perturbation at t the wavefunction is the lin. comb. of the
eigenstates of Ho: ¢ = 3", c,(t)W,e_%E’t, where ¢, (t = 0) = d;r, i.e.,
c(t=0)=1land ¢ (t=0)=0if r #i.



Selection rules

Time dependent perturbation

@ One can easily show that dck = —L3 Kicre'“at, where wy, = EkhE’
and Kir = [ 95 K(t)w,dr.

@ As a "first order" approximation at the rhs of the
% = —é’ >, Kir-cre™¥t equation ¢, is set to zero except ¢; which is one.

@ Integrating the dck = iKk-eiwkft equations with respect to time, the
new ck (t) =0k — + Kk,(T)e“"k'TdT defines the transition probability:

W(i = k) = e e)F = % |fy Ka(r)es dr[*,if i # k.



Selection rules

Electric dipole transition

~/2bUnm

- >

E
/l ‘I
;poremial of Hatom
-

~0.05nm

H atom in visible light. E field is homogeneous in the scale of the H atom.
Potential energy in the electric field: Epor = 3, ®(r;) = [ p(r)®(r)d>r, where
p is the density of electric charge Epoe = [ p(r)®(r)d*r =

S p()(@(0) + Voleg - r 3 5% 22| o+ )dr.

If the total charge is zero and cijerivatives of E is supposed to be small,

Epot = —Eli=0 fp(r)rd3r = —Ed, where d is the electric dipole moment.



Selection rules

Electric dipole transition

@ Transitions induced by a light beam, perturbation operator:
K = eE&sin(wt) — Kir = eExxirsin(wt)

22 .
0 W(i— k) = S5 |xul?| [ sin(wt)e T dr|*, where sin(wt) can be

iwt —iwt
—e )

replaced by 1 (e
2.2 . . 2
W(i — k) = G bl | [y et dr — [ ln=)mdr
@ The above transition probability large if w ~ wy or w ~ —wy;: absorption

and induced emission of a photon.

@ The transition probability is proportional to the square of the transition

dipole moment: exi; = [ 1iexip,dr



Selection rules

Electric dipole transition

@ if a xi is zero the k = i transition is called forbidden.

@ As an example, investigate the Voet,0=0,mp=0,me=1 = V-2 1=0,my=0,m,=1
transition! X1,00,12,00,% = J \U270707%X\I11,0,07%d7'. The value of this
integral is zero because of the symmetry. Vy00.1 and V00,1 are
symmetric functions, e.g., wz,o,o,%(") = \I12’0707%(—r), on the other hand

X is anti-symmetric.
@ Similarly, s = s, p = p, d = d, ... transitions are all forbidden.

@ The selection rules for the hydrogen atom:

(=041, m;:mbme:tl, and m, = m;,



Many-electron syste

Pauli exclusion principle

Pauli exclusion principle (postulate VI of quantum mechanics):
@ No more than two electrons may occupy any given orbital, and
if they do so, their spins must be paired
@ There cannot exist two electrons having the same set of
quantum numbers

@ The total wavefunction must be antisymmetric with respect to

the interchange of all coordinates of two electrons (fermions)



Many-electron syste

Pauli exclusion principle

V(X1 X0, oy Xiy ooy Xjy oo ) = —=V(X1, X0, .00 Xjy oo oy Xy o),
where x; is a composite notation for the spatial coordinates and the

Spin, Xj = (r;,a;).



Many-electron syste

He ground state: 1s° (fixed nu

N 1 1

Hy=--v2- =

H 2 r
~ 1 1 2 2 1 ~ ~ 1
HHeZ——V%——Vg————+—:h1+h2+—
2 2 no n o rn ro

For the sake of simplicity the e"—e™ interac. is neglected:
,:I’e_:l;;prox =hi +h
V(1,2) =V(n, r2) = ¢1(n) - ¢2(r2) = $1(1)$2(2),

these are H atom-like wavefunctions (see page 146)

hioi = Eip;
E?PPT = F; + E,, here Ey and E; are the H atom-like energies (Z=2)
Z2



Many-electron syste

He ground state: 1s° (fixed n

let's label the electrons ¢a(1) = 1s(1)a(1) and ¢p(2) = 1s(2)5(2)
wground(172) = 1S(1)Oé(1) : 15(2)B(2)

It is not anti-symmetric!

Y ouna(1,2) = 5 (1s(1)a(1) - 15(2)8(2) — 1s(2)(2) - 1s(1)5(1)) =
1s(1)15(2) 5 ((1)B(2) — a(2)B(1)).

It is the only possible anti-symmetric wavefunction. \Uéround is the eigenfunction of
the §; = 5,(1) + 5,(2) and $2 spin operators with ms = 0 and s = 1 quantum

numbers.



Many-electron syste

He excited states

¢, and ¢y are the occupied atomic orbitals

Degenerate product states (e-e interaction is not considered):

®1(1,2) = ¢a(r1)dn(r2),  P2(1,2) = ¢a(r2)en(r1)

These are orthogonal to each other, [ drf [ dr3®:(1,2)$2(1,2) =0, and
degenerate with E?PP = E, 4+ E, energy:

(h1+ h2)®1 = (hada(r1)ds(r2) + da(r1) hags(r2)) =

E.a(r1)dn(r2) + ¢a(r1) Esdp(r2) = (Es + Eb)P1

To include the e-e interaction the wavefunction can be approximated by a linear

combination: W = b1 ®; + bo®>

(b1 + ho)W = (E, + Ep)V = (h1 + ho + V)V = (E, 4 E, + V)W



Many-electron syste

He excited states

Introducing some shorthand notations:

V-1

r2

C = (1] V]01) = (03] 7]02) = [ ry [ ¥, el lntea)®,

ri2

K = <¢1|\7|¢2> — <¢2|\7|¢1> — fd3l'1 f d3 "1)‘#[,(’2)¢b('1)4’a('2)(so_aa_bv

rn2

where 04,5, is 1 if spins o, and o} are equal (a-o or 8- ) and zero otherwise.

AE=E—-E —-E

(Ea+Eb+ V)W:EW:(—AE—F VW =0 (W=bod;+ byby)

by (—AE-|— \7) &1+ bo (—AE+ \“/) ®; =0



Many-electron syste

He excited states

(@] / = by (~BE+ V) &1+ bz (~AE+ V) & =0
(P2| / = by (—AE—l— \7) ¢1+b2(_

>
m
+
<>
~
©
N
Il
o

by (<4>1|\7\¢1> - AE) + b <4>1|\7|¢2> —0
by <¢2| \7|¢1> + by (<¢2|\7|¢2> - AE) =0

The result is a system of homogeneous linear equation:

b1 (C—AE)+ bK=0

biK* 4+ b (C—AE)=0

To have a non-trivial solution the determinant of the coefficient matrix should

be zero: (C — AE)® — |K[>=0



Many-electron syste

He excited states, matrices

A homogeneous system of linear equations:

C11X1 + Ci2X2 + C13X3+. ..

Co1X1 + Co2X2 + C23X3+ . ..

Cn1X1 + Cn2X2 + Cp3Xz+ ...

Matrix notation: C-x = 0, where

C11 C12 . Cin

C1 Cx2 ... C2p
C= ,

Cnl Cn2 . Cnn

CinXn — 0

ConXn = 0

Conxn = 0

X1

X2

Xn



Many-electron syste

He excited states, determinan

i1 2
det(C) = = C11622 — @1€12

€1 22

€11 C12 G3
det(C) =|co1 ¢ o3

31 €32 (33

=C11C22C33 + C12€23C31 + C13C21C32

— C13C22€31 — C11€23C32 — C12€21C33-




Many-electron syste

He excited states, adjoint of

adj(C) = | -

C22

C32

C21

C31

C21

C31

C23

C33

C23

C33

C22

C32

C12

C32

C11

C31

C11

C31

C13

C33

C13

C33

C12

C32

C12

C22

C11

C21

C11

C21

C13

23

C13

23

C12

C22




Many-electron syste

He excited states, matrices, de

@ Formal solution of a inhomogeneous system of linear equation, C - x = b,

needs the inverse of matrix C: x=C!-b
@ C! =adj(C)/det(C) (see wikipedia page: Invertible matrix)

@ To have a non-trivial solution of the homogeneous system of linear

equation, the matrix C~! should not exist. — det(C) =0

b1 (C—AE)+ K =0
biK* 4+ b (C—AE)=0
To have a non-trivial solution the determinant of the coefficient matrix should

be zero: (C — AE)*> —|K]?>=0



Many-electron syste

He excited states

We obtained two solutions for the energy: AE = C & |K| or
E=E+E+ C=E|K|

If AE = C + |K| then blzm:%and

v, = % (da(r1)dn(r2) + @a(r2)dn(r1)) a(1)8(2) = singlet state

If AE = C — |K| then blz—m:%and

V_ = % (da(r1)@n(r2) — @a(r2)dn(r1)) a(1)8(2) = triplet state

Pauli exclusion principle = W' = W (r1,r2) — W, (r2,1r1),
Ut = 25 (¢a(r)dn(r2) + da(r2)és(r1)) ((1)(2) — (2)5(1))
WP = 7 (9a(r1)dn(r2) — ¢a(r2)dn(r1)) ((1)5(2) + a(2)8(1))



Many-electron syste

He excited states

What are the meaning of the C and K coefficients?

2 2
C=[dn/f d3rzw is the classical coulomb interaction of two

charged particle. It is always a positive quantity.

K = f d3r1 f d3r2 ¢:(r1)¢;(r2)¢b(r1)¢a(r2)5

2 0.0, 1S the so-called exchange

interaction, no classical analog.

For the ground state, ¢. = ¢» = dn=1,¢=0,m,—0, only the singlet combination,

¥l can appear.

For the first excited state ¢, = ¢n—1,¢-0,m,—0 and ¢p = Pn=2,¢=0,m,—o0-



Many-electron syste

He excited states

E
K, +C,, < 72K
0t t—t—r 01
——— EtE
44147
_ K +C
E,+E, 00"~ 00

For states arising from the same configuration, the triplet state generally lies
lower than the singlet state (see Hund's rule). Qualitative explanation:
W3(r1,r1) =0, i.e., the two electrons can not be at the same place.

Wl(ry,r) # 0, i.e., large repulsive coulomb force increases the energy.



Many-electron syste

parahelium, orthohelium

Vertical scale of
visible transitions

QOrthohelium
S=1

Parahelium
S$=0

Helium
energy
levels

2 3 0 1 2
Orbital angular momentum |

Excitation of both of the electrons

2% requires an energy larger than the
"2 jonization energy: only 1s'nl*

Hydrogen excitations appear in the spectra
levels

No radiative transitions between singlet

and triplet states

U Spectroscopically, He behaves like two

distinct species, parahelium and

orthohelium



the Slater determin

the easy way to build antisym

\Uground = 1515[05(1)/8(2) - /B(l)a(z)]

1s(1)a(1l) 1s(1)5(1)

o) 1|~ DRI ~ 1=0)AD)a()

= 1s(1)1s(2)[(1)B(2) — B(1)a(2)]

rows — electrons

columns — spinorbitals



the Slater determin

Determinant

A homogeneous system of linear equations:

C11x1 + Ci2X2 + c13x3+. .. +c1nxn =0
Co1X1 + C22X2 + C23x3+. .. +c2nxn = 0
CniX1 + CnaX2 + CpzXxz+. .. +CnnXp =0

Matrix notation: C-x = 0, where

Ci1 Ci2 ... Cip X1

€1 C2 ... C2p X2

Cn1 Cn2 e Cnn Xn



the Slater determina

Determinant

@ Formal solution of a inhomogeneous system of linear equation, C-x = b,

needs the inverse of matrix C: x=C™!.b
@ C ! =adj(C)/det(C) (see wikipedia page: Invertible matrix)

@ To have a non-trivial solution of the homogeneous system of linear

equation, the matrix C~! should not exist. — det(C) =0

@ det(C) = Z (—1)Pc1py C2pa Caps - - - Cnp,, Where the sum runs on the
{p1,p2,---Pn}
whole set of permutations of numbers 1,2,3, ..., n and p is the parity

(number of exchange of indices requiered to obtain the given

permutation) of the given permutation.



the Slater determina

Determinant

Some properties of determinants:
o det(AB) = det(A)det(B)
o det(AT) = det(A), where AT denotes the transpose of A.

o If matrix A is composed from column vectors,
A = ([a1],[a2],[a3],---,[an]), and vectors [a;] are linearly

dependent then det(A) = 0.

o det([a1],[az],...,[ai],..-,[a],...,[an]) =
—det([al] , [ag],...,[aj],.. .,[a,-],...,[a,,]).



the Slater determin

Determinant

@ Expansion of a determinant along a column (e.g., second column)(or a

row):
a11

a1

as1

+(=1)**2ap; -

a1z
a2

as2

a11

asi

an1

a13
a3

ass

ai13

ass

ain

azn

asp — (71)11-2312 .

ain

asn 342
+(-1)**2a5; -

a11

a1

azi1

asi

ai3

a3

az3

ass

ain

azn

azn

a3n

+(—1)* a4 - ...



the Slater determin

Li atom

| e 15)50) 25(at)
75 |15(2)a(2) 15(2)5(2)  25(2)a(2)
15(3)a(3) 1s(3)B(3) 2s(3)a(3)

b =

rows — electrons

columns — spinorbitals



the Slater determin

Li atom

if two columns are equal - three electrons are on one spatial orbital

the Pauli exclusion principle is not fulfilled

L e 1s(1)8(1)
oL = 5 [1s(2)a(2)  1s(2)5(2)
1s(3)a(3)  1s(3)3(3)
— 1s(D)a(1) 15(2)8(2)  1s(2)8(2)
1s(3)8(3)  1s(3)B(3)
_ 1e(1)80) 15(2)a(2)  1s(2)8(2)
15(3)a(3)  1s(3)B(3)
1s(2)a(2)  1s(2)B8(2)
+1s(VBM) 1s(3)a(3)  1s(3)B(3)

=0

1s(1)8(1)
1s(2)3(2)
1s(3)5(3)



the Slater determina

Li atom

if two rows are interchanged - the determinant changes sign
antisymmetric wavefunction

1st row expansion 2nd row expansion

1s(1)e(1)  1s(1)B(1)  2s(1)a(1)
P = |1s(2)a(2)  1s(2)8(2)  2s(2)a(2)
1s(3)(3) 1s(3)B(3) 2s(3)a(3)

1s(2)a(2) 1s(2)B(2) 2s(2)a(2)
1s(1)e(1)  1s(1)B(1)  2s(1)x(1)
1s(3)(3)  1s(3)B(3) 2s(3)a(3)

1—2
bLi T =

-~ 15(2)8(2)  2s(2)x(2) _
= 1s(1)(1) 15(3)8(3)  25(3)a(3) = —1s(1)a(1)

1s(2)B(2)  2s(2)a(2)
1s(3)B(3)  2s(3)x(3)

— 1s(1)B() 1s(2)a(2)  2s(2)a(2) +15(1)8(1) 1s(2)a(2)  2s(2)a(2)
1s(3)x(3)  2s(3)(3) 1s(3)x(3)  2s(3)(3)
1s(2)(2)  1s(2)B(2) 1s(2)e(2)  1s(2)B(2)

+ 2s5(1)x(1) — 2s(1)a(1)

15(3)(3)  1s(3)B(3) 15(3)a(3)  1s(3)8(3)



the Slater determina

General properties

@ The electrons are indistinguishable...

@ The individual one-particle orbitals have no physical meaning:
the Slater determinant is invariant with respect to any
orthogonality and scalar product keeping linear combination of

the original orbitals.



Electronic structure

Hamiltonian

. Ny , N Za NNy
H_—ZEV,-—ZR—M+ZZTU+AHSO

i >
@ Energy of atoms is basically n dependent, moderate dependents on L, S

values and slightly dependents on J value (light atoms).

@ Spherical symmetry —> J? and J, commute with the Hamiltonian: J and

M, are good quantum numbers.

@ Without AHs, the L, M;, S, Ms are also good quantum numbers



Electronic structure

Aufbau/building-up principle, di

@ orbitals with a lower n + ¢ value are filled before those](s/
with higher n + £ values

@ in the case of equal n + ¢ values, the orbital with a

lower n value is filled first

Examples: He, Li, C, N, O
(r3g) < (ras) =: For the 3d electrons the e-e repulsion is
so strong that in most of the cases the 4s orbitals are

prefered: Sc, [Ar] 3d'4s?
There are exceptions too: Cu, 1522s22p®3s23p®4523d9 is

predicted instead of 1s22s22p®3s23p®4513410

Due to the e-e interaction the shell-, sub-shell configuration can not describe the
atomic spectra (see the case of the He atom: 1s'2s! configuration describes two

states [a singlet and a triplet state] with different energies.)



Electronic structure

Atomic term symbols, vector a

@ total orbital angular quantum number
L= (Lo Ly, L), & = (T, Dy, )
S22 and My =S my, My =0,%1,42,. .. %L
L= 0 1 2 3 4
S P D F G

>
I

@ total spin angular momentum quantum number

S=Sor Ms=>"ms, Ms =0,+1,+2,...,+S

@ total angular quantum number

J=L+S M,=0,+1,42,...,+J




Electronic structure

Atomic term symbols, Clebsch-

@ total orbital angular quantum number

L=ty + 0,01 +0—1,..., |€1 —€2|
@ total spin angular momentum quantum number
S=s1+ss,51+5—1,.., |51 — 52|

© max{M;} = L and max{Ms} =S; (2L+1)(25+1)=>",2J+1

PN

e J2, J, eigenfunctions W3 can be mixed from the 2,1, 828,

eigenfunctions 25+1ytL

msmy
J MSEHET™ my 25+1yyL J,my
Vimmams = 2 Clgm Viem  (Cism,: CG coeffs)
mg

@ total angular quantum number

J=L+SL+S—1,..,|L—5



Electronic structure

Atomic term symbols

@ atomic term symbol: 25+1[
o term: 25H1[

@ microstate: a unique configuration of quantum numbers
@ n = num of spin orbitals; kK = num. of electrons

@ number of microstates: (Z)

e multiplicity: 25 +1
S= 0 1/2 1 3/2
25+1= 1 2 3 4

singlet doublet triplet quartet



Electronic structure

H electronic transitions, 251/2,

s d
L A Visible
% o o Wavelength, 1/nm
Paschen=7) | g 8888 g g S 8 8§ 8
~ — 0 © wn < el ~N - - -
Balmer // [ NI I | | I | 1
S| o 1 ]
20 571 cm™ (H,)
23039cm™ (H) Balmer Lyman

24380 cm™ (H,)

Paschen

Analysis

82 259 cm ™ Brackett



Electronic structur

Atomic term symbols, heliu

O 15 |F ID lF Js JP JD 3F
3 | 6876
>
20 083
(=
S
“10 |
20 +

—245t




Electronic structure

Atomic term symbols, 2°*1L

@ 1s%: 1S,
@ 2p% 1S,
@ 3d%: 1S,
e 1st: 251/2

@ 15°25%2p', i.e. [Ne]2p': 2P;)5,
2Py )5

atoms with closed subshells are in

the 1S, state

atoms with one e~ in an open

subshell n? are in the 2L state

In general, the open subshells

define the atomic term



Electronic structure o

Atomic term symbols, non-relati

@ In the non-relativistic case 271 L defines the energy.

@ The relativistic effects (e.g., spin-orbit coupling) are small perturbations.
The spin-orbit coupling for the individual electrons is small. An average

can be calculated using the total [and § operators: AI:ISO = A(L, S)C .8,

@ The energy leveles are splitted according to the various values of J:

AE, = AL S)J(J+1)— L(L+1)—5(5+1))

@ Asin a given term the L and S are constant (and AJ = 1) the observable
splitting is E(J) — E(J — 1) = A(L, S)J.

@ — Fine or multiplett structure of the spectra



Electronic structure

Atomic term symbols,

25+1 LJ

15 micro-
states

no electron-
electron
repulsions

s

1 micro-
state

1p™

lso

1 micro-
state

5 micro-
states

3P

5 micro-
states

5 micro-
states

9 micro-
states

electron-
electron
repulsions

3P,
3 micro- A

states

3P,

1 micro- 9
state

spin-orbit
coupling



Electronic structure o

Relativistic case, jj-coupling

@ In the relativistic case (Z»1) the spin-orbit effect dominates
over the e™-e™ repulsion, thus Z,<J 5 can be considered as a

perturbation.

A

° Heo =3 ailisi =3 G (7 — 6 — 57).

o Spin and orbital momenta of the electrons coupled into J;
eigenfunctions. The anti-symmetrized products of these
functions are the eigenfunctions of the zero-order Hamiltionian
(A without the e~-e~ repulsion).

o AE, =3 5(ili +1) = ti(li + 1) — si(s; + 1)).

@ The good quantum numbers are J, j1, j», etc.



Electronic structure
LS- and jj-coupling

Coupling of ¢=1 and s=1/2 results in

Pure Pure
Russell-Saunders J either a j=1/2 or a j=3/2 state.
coupling coupling
Possible J values:
'S, e S
— A2 J
| N N 1/2 1/2 0,1
- @
» i 1/2 3/2 1,2
|| 3/2 3/2 0,1,2,3
R e

Period



Electronic structure

Hund's rules

an atom in its ground state adopts a configuration with the

greatest number of unpaired electrons



Electronic structure

Hund's rules

Rules to determine the lowest state for a given electron configuration

@ the term of highest S (maximum multiplicity, 25 + 1) will lie lowest in

energy

@ if more than one term exist with maximum multiplicity then the term

having the highest L will lie lowest in energy

@ for terms having a spin-orbit splitting, if the outermost subshell is half-full
or less than half-full the states will be ordered with the lowest J values
lying lowest; if the outermost subshell is more than half-filled, the level

with the highest value of J, is lowest in energy



Electronic structure

Selection rules for electronic t

transition dipole moment:

f=—e Z P

electrons

pfi = /¢fﬂ¢id7

one electron multi electron
e As=0 e AS=0
o Al =21, Amy =0,+£1 o AL=0,41

o AJ=%1,0,J=0+J=0



@ any atomic state can be specified

@ any spectroscopic transition can be described




Purpose: analysis of the elementary composition.

Sample preparation: heating to high temperature.

Atomic absorption spectroscopy and atomic emission spectroscopy
Concentration of atoms can be measured (Beer-Lambert law[see

later] /intensities)



Composition of stars

Relative speed and temperature of stars and galaxies.



Born—Oppenheimer

argument: elephant herd and

@ electrons

o light particles

o fast
@ nuclei

o heavy particles

o slow



Born—Oppenheimer
Hamiltonians, IV = EW

~ 1 1 .
H= _Evi — =, fixed nucleus, one electron atom
r
.\ 1 1 1
= _Evi — 2T/Ipv’2’ — R—ep, one electron atom
N1
I=— Z EV? - 7VA - Z + Z Z P multielectron atom

i i j>i

polyatomic molecule, general case:

"’1V2M1V2NMZ ZuZs
D AR DR

i j>i A B>A

" Exin(electrons) + Exin(nuclei) + Epot(el., nuc.) + Epot(€l, el) + Epot(nuc, nuc)”



Born—Oppenheimer
Hamiltonians, fI = He + Hy

SRR B DI 3 IR0 3 DL 3D Dk

T2 2 2Ma A i A P> " A B>A Rag
R N 1 N M ZA N N 1
A Z* D D>~
2 i A VA ij>i

The electronic Hamiltonian He can be approximated by an average,
(Ve |He

Hamiltonian.

V.) = Ec({Ra}), where W, is the eigenfunction of the electronic

v+ z z 2aZs

Hy = —
A B>A Rag

A+<\Ue fl.

>M§

=-) —V3+E
ZZMA atEror




Born—Oppenheimer
Hamiltonians, fI = He + Hy

ZpZp

Eror = E.({Ra}) + Z Z

A B>A

HyWy = EVy

Eror is the potential energy surface governing the motion of the nuclei.

E is the Born—Oppenheimer approximation to the total energy including the
translational, rotational, vibrational, and electronic energy.

When solving for the electronic WF, H er({r,-} {Ra}) = EVe({ri}, {Ra}):

kinetic energy of the nuclei is zero, — EA CTOn VA =0, and

ZR*,‘ZB = const
AB

nuclei-nuclei potential energy is constant, ZX Zg>A



The variational princi

assumptions

@ ground state: Wo, Eg = f‘USFl‘UQdT
@ set of orthonormal eigenfunctions is available, Ay; = eip; and fq/),.*wj = §jj
@ ¢ >k

@ the trial wavefunction is constructed as W = 3. cj¢);

variational principle

the energy obtained with the trial wavefunction, W, is always an upper bound to the

[ v*Avdr > E

ground state energy, Ep, i.e., E = Tvvdr




The variational prin

proof

[ S AY qudr
E_ _ i j
Jyrvdr /ZCW,-*ZWJW
i J
ZCTCj/w?Ffwde Zci*cj/w7€fwde

_ [V*Avdr

Zci*Cj/wflﬁde ZC,-*CJ'/’d)?wde

S S

= A
2 = 2
> 2oi€




The variational princ

The variational method

Supposing to have an anzats for the wavefunction with some
parameters ci, ¢, ..., ¥ = V(c, o, c3,...), then the energy can

be approximated by the 'expectation value':

) = (W(cr,c2,.)|AIV(cr,c2,0))
<\|J(C1,C2,.,. )‘\U(Cl,Cz,... )>

JV*(c1,62,... YAV(cr,c2,... )dT
f V*(c1,c2,... )W(c1,c2,... )dT

E(ci,c,. ..

One can think that the parameter set minimizing the energy

E(c1,c,...) is the optimal choice. =

OE(c1,c0,...) _ .
— a0 0, Vi



The variational princ

The variational method, linear

For the sake of simplicity it is assumed that functions ¢;,i = 1,... are orthogonal to
each other.

The optimal wavefunction can be approximated in a linear form, W = 3", cj¢);.

g_ JY HYdr
T [vrwdr
DY o' [ wf Ayydr Y ¢ (il Hlyy)
ZiZj i [iydr >t
Using the condition of the minima, g—i =0, an eigenvalue equation can be derived:

> (bl Al)e = Ecy

!

In vector notation : Hc = Ec




The variational princi

The variational method, optima

In the theoretical calculations the one-electron molecular orbitals, ¢, are chosen

as the linear combination of atomic orbitals (LCAO), xu: ¢k = Z“ ChuXp

In the simplest approximation the wavefunction is a Slater determinant
(anti-symmetrized product) composed from a set of LCAO's:

Vaer(ra,r2,- - ) = e A(éa(r1)d2(r2) - én(rn))

The optimal ¢, molecular orbital coefficients are obtained from the variational
principle. —>

Hartree-Fock equations: I:_¢; = ¢;¢;, where F is a one-electron operator,
F=h+ Veff(¢1,¢2, ...¢n) and ¢; is (some kind of) energy of the molecular
orbital. Mean field approximation: the e-e interaction is described by a single
averaged effective potential, VefF' which depends on the molecular orbitals

1,02, - ON-

Pseudo-eigenvalue problem (I:_ depends on the molecular orbitals ¢;), =

iterative solution.



The variational princ

The variational method, Config

The determinant wavefunction is not exact.
Better approximation: linear combination of determinants.

Hartree-Fock calculation = occupied and virtual orbitals = ground state,

yo

det and excited determinants, W1 W2

det? T det?

Configuration interaction wavefunction: W¢y =37, V.,
c; coefficients can be calcuated from the variational principle.

Corrections with respect to the mean field approximation, electron correlation.



The effect of temper

Mathematical background, con

Condition of the extrama at xg of f(x) = f(x1,x2,...,Xn):

of —0 2t -0 ... 9t -0

Ox1 X=xp 1 Oxo X=xg ! ' Oxp X=xg

Where are the extrama of f(x) if x1, x2, ... are not independent,

but connected by the g1(x) =0, g2(x) =0,...,gm(x) =0
conditions?

Example: f(x,y) =x+y and g(x,y) =x>+y?>—-1=0



The effect of tempera

Mathematical background, cond

Lagrange multiplication method: a new function is introduced:

A(x, AL, A2,y Am) = F(X) — A1gi(x) — Aaga(x) -+ — Amgm(x)

The necessary condition of the conditional extremum at xq:

ON —0 oA -0 ON -0
3X1 X=X0,)\:)\0 ' BXZ X:XQ,/\Z/\O ' ' ax" X:XQ,/\Z/\O

and

oA _0, o —0 ON —0
25 X=Xg,A\=Ag T Ox X=X0,A\=MAg ' " OAm X=Xg,A\=M\g

Equations in the above line are identical with the constains:

gi(x) =0 for Vi = f(xg) = A(x0, M) -



The effect of tempe

Mathematical background, co

In our example: A(x,y,\) =x+y — A(x%+y? —1)

oN __ _ oN __ _ _ 1 _ 1
a—X—1+2>\X—O, 8—y—1+2Ay—O$X——ﬁ,y——ﬂ
Substituting these into the condition:

_ 2 2 _ 5.1 o, 41
l=x"+4+y —2W:>x—y—i%



The effect of tempe

Mathematical background, Sti

Let's suppose that N is a large integer.

N
1

N
In(N1) = " In(i) %/ In(x)dx = [xIn(x) — x]¥
i=1

In(N') =~ NInN — N



The effect of tempe

Energy levels and populations

We will suppose that our system contains N particles distributed on

energy levels g = 0,¢1,¢5,... with populations ng, ny, n2, n3, .. ..

Internal energy:

H o——e— n,=2 U= UO 4 E nie;

& — e —e—e N,=3
1 1 .
i=0

&{=0—ee—ee—o— ;=5



The effect of temper
Thermodynamic probability

The number of individual distributions belonging to the given
no, N1, N2, N3, ... popluations are called the thermodynamic

probability,

W = N!

nolnilnalnsl...”

Number of combinations with repetition.

Hypothesis: If N and n; numbers are large (thermodynamic limit),
the observed macroscopic state is defined by the W with the

maximal value.



The effect of tempera

Extremum of the thermodynami

As the In(x) function is a monotonically increasing function, the

extremum of W and In(W) defines the same set of populations.

We have two constrains to take into account: >, nj = N = const.

and ) .einj = E = const. (isolated system)

Using the Lagrange multiplication method:

/\(n07 n,na,... ,Oé,,B) =

In(W(no, n1,n2,...))—p <Z gin; — E) + a (Z n; — N)
i=0

i=0



The effect of temper

Extremum of the thermodynam

Necessary condition for the maximum: (% = 0 for each n;.

algnw) Bei+a=0

In(W) = In(N1) = >, In(n;!) =
Nin(N) — N —>".(niIn(n;) — nj) = NIn(N) — >, niIn(n;)

aIn(W)

~an— ~ —In(n;), where nj >>1

n; = e B

Zn,:e Zeﬁa'—N:e Zlevﬂe, g

q is the partition function: g =), e P



The effect of temper

Thermodynamic average

Boltzmann distribution:

Ne_ﬂsi

n; =

q
ZEie_Bsi

E=Z€;n; = NIT

To find the 3 parameter these results should be applied to the ideal
gas (see Atkins, ...) : E = % p= Vﬂﬁ = [ = %
where p is the pressure. Compering this results with the equation

of states for the ideal gas, we can see that 8 = %



The effect of temper

Partition function

("] T—>0K,5—>OO, (60:0):}q:2ie—,35;:1,

—eoB
no=N&"= =N

nj = Ne_ls’ﬂ =0, where i #0

o T — ocoK, 3 — 0, supposing that the system has only two
states, g = Y., e 75 =2,
co=0ande; >0=np=n =N/2.

@ In general, the value of the partition function gives the number

of states available for the system.



The effect of tempera

Partition function, separation of

@ The energy of a molecule can be approximetly divided into
more or less independent contributions: translation, rotation,
vibration, electronic excitation, etc.,

Ex = Elg'r 4 EJ(ot _'_gxib 4 67‘/.

e Partition function:

q= Z e —Bek Z e Blei +Ej+€k+€/) _ qtrqrotqwbqel
ij,k,l
° Typlcal values for the partition functions (room temeperature,

1 mol gas): ¢¢ =1, ¢» = 1.001, ¢t = 10, g*" = 10°



Molecular symmetry

molecular symmetry operation: the initial and final states are

indistinguishable
@ physical properties are invariant with respect to symmetry operations

@ for every operation there exists a corresponding symmetry element



Molecular symmetry

molecular symmetry operation: the initial and final states are

indistinguishable

symmetry operations symmetry elements
@ reflection @ plane
@ rotation @ axis
@ inversion @ center

one symmetry element can generate more than one operation

for example: clockwise, anticlockwise rotation




Molecular symmetry

set of elements (e.g., a, b, c,...) together with a binary operation

(multiplication)

four conditions: (i) one of the elements is the identity(al = a), (ii) associativity of
multipication(a (bc) = (ab) c¢), (iii) each elemenet has an inverse (for any a there is a
b for which ab = 1), (iv) closure(if a and b are elements of the set than ab is also in
the set)

examples:
@ the set of integers with addition (identity element?)

@ the set {1,i,—1,—i} with ordinary multiplication

1 0 0 1 -1 0 0 -1
@ the set of matrices , s s with
01 -1 0 0 -1 1 0

matrix multiplication



Molecular symmetry

set of elements together with a binary operation

the set {1,i,—1, —i} with ordinary multiplication
@ identity element, E, is the number 1
@ associativity: a(bc) = (ab)c

@ inverse and closure — group table

T R S T
1 1 i -1 =i 1 1 i -1 -i
i i -1 -i 1 A4 -i -i 1 i -1
-1 -1 -i 1 i -1 -1 -i 1 i
-i -i 1 i -1 i i -1 -i 1

E A B C

E E A B C

C C E A B

B B C E A

A A B C E



Molecular symmetry

set of elements together with a binary operation

i 1 0 0 1 -1 0 0 -1 . . T
the set of matrices s s s with matrix multiplication
0 1 -1 0 0 -1 1 0
1 0
@ identity element, E =
0 1

@ associativity: A(BC) = (AB)C

0 1 -1 0 0 -1
@ inverse and closure — Cayley/group table, A= , B= , C=
-1 0 0 -1 1 0

> W am
> ® 0o mim
W om>|>
Aam>» ™| W
m > W N|N

Q

Il
/-~

<)

|

o ~
~—_
/I—\
= o
o r
D

Il
/-~
o =
= o
~—



Molecular symmetry

set of elements together with a binary operation

1 0 0 1 -1 0 0 -1
the sets {1,i,—1, —i} and s R s are different
0 1 -1 0 0 -1 1 0

representations of the same group (Ca,, see later ...)

> W Aom
> ® A mim
@ Aom>(>
om>» w|lw
m>» ® 0ln



Molecular symmetry

set of elements together with a binary operation

point group

the center of mass is invariant for the operations, i.e., the symmetry elements

have a common point

elements of the point group are the symmetry operations (not the symmerty

elements)

binary operation is the successive application of two symmetry operations;

PQ — first Q then P



Molecular symmetry

symmetry operations

O identity

@ rotation
© reflection

@ inversion

© improper rotation

symmetry tutorial website



http://symmetry.otterbein.edu/tutorial/index.html

Molecular symmetry

rotation

C, denotes the n-fold axis of symmetry
the rotational angle, «, is 360°/n or n = 360°/«
more than one rotational axis = greatest C,, is called the principal

axis



Molecular symmetry

reflection

o denotes the mirror plane
e vertical, o, parallel to the principal axis (vertical planes
bisects as many atoms as possible)
@ horizontal, oy, perpendicular to the principal axis

e dihedral, o4, vertical and bisects two C, axes (dihedral planes

are such planes, which bisects as many bonds as possible)



Molecular symmet
Hzo, Oy




Molecular symm

benzene, o, op, and ag

op: red
o,: brown

oq4: yellow




Molecular symmetry

inversion, improper rotation

i denotes the center of symmetry
S, denotes the n-fold improper axis of symmetry

S, - two successive transformation:

@ rotation by 360°/n

o reflection through a perpendicular plane

note that So=/ and S1=¢



Molecular symmet
hydrogen peroxide, S = i

1 2 )
H rotatonby - H_ | reflection H
/O 0 180° 0 \ O\ > 00
H ' H H
1 1



Molecular symmetry
Staggered ethane, Sg

H
a\ //,
CTATEN
Hb
H
a ' H
~ I CE HC\C /Ha oy, HC-‘(!: . a
H/ l\H -7 I I / : 2\
C b '
H



Molecular symmetry

flowchart of point groups

examples
: YES NO 4 H O
'\nversxon? 2
vEsTE d ‘ YES NO

E - CeH
e e H'"WJ el o

C

§
g

M YES\ 7

l—J(—J l—J ..........
@&*Qﬁu




applications

chiral molecules: S, is absent (non-superimposable on its mirror
image)

polar molecules: C,, C,,, and Cg (dipole moment)




Molecular symmet

the G, group multiplication

E &G o, O’:/

E| E &G o, a:,
G| G E 0:, oy
oo| o, o, E G
o, |0, oo G E



Molecular symmetry

matrix representation of the

z

G| pt | =

ov | et | =

The pf?, p)"jl, and p:lz orbitals define a

of the Ca, group.

o
p? —pf
H- H:
| = | —p?
H: H-
Px2 —pxt
Py
H-:
= | 2
H-
le
P -p?
H-
pct | = | —pt
H-: H-
Px? —px?

representation



Molecular symmet

matrix representation of the

‘ E Ca oy o

7
v
7
E E C oy o, C2 =
’
Ca C2 E o, oy
’
oy oy o, E G
’ !’
o, o, oy Ca E
Oy =
’
o, =
’
ovo, =

-1 0
0 0 -1
0 -1 0

1 0 O

0 0 1

0 1 0
1 0 0
0 -1 0
0 0 -1



Molecular symmetry

matrix representation of the

110 O
E= 0|1 O
0|0 1
110 O
oy = 0|0 1
0|1 O

°
BD = o o
e o

p2 does not mix with p)’j‘ or p)’jz

G =

block diagonal matrix




Molecular symmetry

reducible representations

r® = (

rd =

o 10
0o 1

@ I'® _ 3 3-dimensional reducible representation

@ T'™ _ 3 1-dimensional irreducible representation

@ I'® _ 3 2-dimensional (reducible) representation




Molecular symmet

how to reduce I® further
ptt and p!2 are degenerate orbitals let's try their linear combinations

p+ = pyt + pf

p- = pt —pf?

(-G )C)-() =
)l D)) =) )



Molecular symmetry

reducible representations

r®3)

@)

r@

)

@)
/(1)




Molecular symmetry

irreducible and reducible repre:

ai

azi

ai2

a2

din—1

azn—1

dn—1n—-1

dnn—1

ain

azn

dn—1n

ann

@ character:

trace of the matrix,
tra=> :aj

@ characters do not depend on
the form of representation:
the matrices defined by pt
and p/2 have the same
characters than the ones

defined by p; and p_.



Molecular symmetry

character tables, irreducible re

Character tables: collection of the possible transformation

properties of wave functions under symmetry operations 10
E=|0 1
0o o
Gy E G oy a/\, lin., rot. quad.
-1 0 0
2 2 2
Al | 1 1 1 1|z X<, y%, z G o 0 -1
A | 1 1 -1 -1 R, Xy 0o -1 0
B1 1 -1 1 -1 x, Ry Xz 1 0 O
B |1 -1 -1 1|y R« yz ov=[0 0 1
0o 1 0
rd | s -1 1 -3
-1 0
’
A; is the so-called totally symmetric representation. o, 0o -1
0 0o -1



Molecular symmetry

Class

@ Symmetry operations fall into the same class if they are of the
same type (for example, rotations) and can be transformed
into one another by a symmetry operation of the group: a and
b are in the same class if there is a group element ¢ for which
cac’l = b.

@ Number of irreducible representations = number of classes

@ The value of character is uniform in a class.



Molecular symmetry

irreducible and reducible represent

1
nip = E Z 8BcXirrXred

classes

@ n; number of times the irreducible representation occurs
@ h order of the group
@ g. number of operations in the class

@ X, character of the irreducible representation

@ 4 character of the reducible representation




Molecular symmetry

the G, group character table

G, | E (@) oy O'IV lin., rot.  quad. = ré = A & 2B,
A1 1 1 1 1 z x2, y2, 22

Ao 1 1 -1 -1 R, Xy

B: 1 -1 1 1| xR Xz

B> 1 -1 -1 1| vy R« yz

re 3 -1 1 -3

NAl:%{1.1.3+1~1v(—1)+1-1~1+1'1'(—3)}:0
NAZ:%{1.1.3+1.1.(_1)+1-(—1)-1+1'(—1)'(_3)}:1
N51:%{1.1.3+1.(_1).(_1)+1-1-1+1-(—1)'(—3)}:2

Ney= ;{11341 (-1 (-1 4 1-(-1)-1+1:1-(-3)} =0



Molecular symmetry

Two molecular orbitals of forma

(c)

E &G ox o0y | irrep.
(b)) [ +1 +1 41 +1 Ag
()| +1 -1 +1 -1 B1




Molecular symmetry

Assignment of translations an

E &G oy oy | irrep.
TZ Tz 2 y:
f T, | +1 +1 +1 +1 Ai
’C‘) T, |41 1 1 +1| B
|
C T |+1 -1 41 -1| B
/N
H H . o
Rotations can be assigned similarly:
Ty — E &G o o0y | irrep.
O— Re | #1 -1 -1 +1 B,
g R, | +1 -1 +1 -1 B
VRN R, | +1 +1 -1 -1 Ao




Molecular symmetry

character tables

Table 12.2* The C,, character table

C,,, 2mm E ©; o, o, h=4

A 1 1 1 1 z 22 4 K2
A, 1 1 -1 =il Xy

B, 1 -1 1 =l X zx

B, 1 -1 -1 1 y yz

Table 12.3* The C;, character table

Gy 3m E 2G; 30, h=6
Ay 1 1 1 z 245 +y?
5 1 1 —il

E 2 il 0 (%) (x> x% =), (yz, 2x)




Molecular symmetry

irreducible and reducible repres:

Dy,62m E o,  2C, 28, 3C, 30, h=12

A 1 1 1 1 1 1 2 5%+ y*

A} 1 1 1 1 -1 -1 R,

Ay 1 - 1 =i 1 -1

AZ 1 -1 1 -1 -1 1 z

E 2 2 =il =] 0 (%, 1), (xp, x2=y?)

E” 2 -2 -1 1 0 0 (xz, yz) Ry R,)

E.g., eclipsed ethane.



Molecular symmetry

Vanishing integrals

Let's suppose we have two functions describing some properties of a molecule, f; and
f> (e.g., two molecular orbitals). The value of integral | = f fifodT can be non-zero
only if integrand f1f, must have symmetry species A;. "If the integrand changed sign
under a symmetry operation, the integral would be the sum of equal and opposite

contributions, and hence would be zero. (Atkins book)"

E.g.. fi = Y and f2 = 9 (see page 274).

E G o Oy

Ywy | ¥ +1 41 +1 A
Yoy | F1 -1 41 -1 B
Yy | ¥ -1 +1 0 -1 By

irrep.

As the ()Y transforms as By than the | = fw(b)d;(c)dT =0.



Molecular symmetry

Vanishing integrals, dipol mo

w=J plryrdr’

Here p(r) is the charge density of the molecule. It is a totally
symmetric quantity (transforms as A;). To have a non-vanishing
integral, r(x, y, z) must contain a component which also transforms

as Aj. (See the character tables!)



Optical spectrosco

general remarks

Increasing wavelength — 5

1 1 1 Il 1 Il 1 1 L L 1
Wavelength (m) 1077 107" 10°° 10°° 107 107"
Frequency (Hz) 102 10'® 10' 10 10'2 10°
- T T T T = T T T T T
C‘r’:y"‘sm yrays X-rays Ultraviolet |2 Infrared Microwave | Radio (
L L =1 L L .
—————————— Decreasingenergy —— 5
Energy (kJ/mol) 1.2 10° 1.2x 107 12000 310 150 012 0.001 2
| Electronic |
| excitation |
Bond breaking
and ionization
/e Vibration Rotation
p

v%ﬂ. lighl\

400 nm 500 nm 600 nm 700 nm

Optical spectroscopy: from microwave to ultraviolet



Optical spectroscopy

general remarks

@ Theoretical background: molecular Schrédinger equation

@ Separate treatment of the electonic and nuclei motions:

Born-Oppenheimer approximation

@ Molecular degrees of freedom: electronic(UV-visible sp.),

vibrational(IR sp.), rotational(microwave sp.), and translational




Optical spectroscopy

general remarks

the origin of spectral lines is the interaction of electromagnetic

wave and matter

@ absorption (hv absorbed by the molecule: low — high)

@ emission (hv emitted by the (molecule: high — low)

@ scattering elastic (Rayleigh), inelastic (Stokes, anti-Stokes)




Optical spectroscopy

general remarks

atomic spectroscopy - electronic transitions
rotation
vibration (accompanied by rotational lines)

electronic (accompanied by rotational and vibrational lines)

-b vibration levels

A
3
‘ i 5
electronic
excitations !
: ‘p rotation levels
A
H— vibration excitations :
% SD rotation excitations

AN .
electronic levels



Optical spectroscopy
Units for the absorbed light

@ UV-visible spectra:
the wavelength of the absorbed light (A, in nm [typical range:
200 nm - 1000 nm])

@ Infrared spectra:
the wavenumber of the absorbed light

(v*, in cm™! [in the order of 100 - 1000 cm™1])

@ Microwave spectra:
frequency of the absorbed light
(v = £, in MHz or GHz)



Optical spectroscopy

general remarks

The observed spectra do not consist of discrete lines rather are continuous functions,

I(X\), where [ is the intensity as a function of wavelength.

|l I l Spectra from the Schrédinger eq.

Corrected by the transition
|| probabilities

15

g and the line broadening
c 14 effects.
]
Qo
L
2
2 0,5 A
<

0 : T } ?

200 400 600 800 nm



Optical spectroscopy

Quantities characterizing the int:

dl = —kcldx, where k is proportional to the molar

| | absorption(see later) and c is the molar concentartion.
0

# = —kcdx

I dl L
/ — = —.ch/ dx
o ! [
In(é) = —kcl, where kK = €In10

line intensities

@ transmittance: T = I/l transmitted/incident intensity
@ Beer-Lambert law: | = lg107L (¢ - molar absorption coefficient)
@ absorbance: A = logio(lo/!) (A= —logioT)

@ Beer-Lambert law with absorbance: A = eclL

The absorbance is proportional to the concentration!




Optical spectroscopy

Quantities characterizing the sp

@ The properties of the maximum are given as:
Amax, Vmax, OF Vp,a, and the corresponding Amax, OF €max.

€max is independent of the concentration!

@ The intensity of a spectral band is defined by the area under
the band: [ ¢(v)dv

@ The width of a band is characterized by its full width at half
maximum (FWHM):
AXpmax, DVmax, or Avy o is the distance between the spectral

. . Amax
points corresponding to =%



Optical spectroscopy
UV-visible spectrum of the “Nile

solvent: acetonitrile, high absorbtion = dilute solution ( ¢ = 10=5 mol/I)
Do = 499 0
= 0.7439
L=534n
=0.3719

200 400 600 800
Wavelength (nm)




Optical spectroscopy

Interpretation of optical spectr.

Schrédinger equation: AHW(r) = EW(7)

Solutions: Wo(7), W1(7), V2(7),... wave functions and the
corresponding Eg, E1, Ep, . ..

The positions of the maxima correspond to the differences of

eigenvalues derived from the Schrédinger equation.



Optical spectroscopy

Interpretation of optical spectr.

o E W Vmax is determined by the
difference of the energies of the

initial (m) and final (n) states:

En — Em = hvmp

) (O E, VY,
The band intensity reflects the probability of absorption of a
photon.
The collision of a photon and a molecule in state m

Bimolecular reaction: M,, + hv — M,



Optical spectroscopy

Bimolecular reaction, rate equ

de = Amn Nm,OZ/

o N,, : concentration of molecules in state m
@ p, : concentration of photons

@ A, : rate constant for the absorption

A interrelates the observed band intensities to wave functions W

obtained from the Schrddinger equation

V2 N h2
Relation to the intensity:/ e(v)dv = &r?—lomnAmn

V1

@ ¢ : speed of light



Optical spectroscop

transition moment

2

Relation to the wave functions:
Amn X |Rmn|Zy
where |Rn|? is the square of the transition moment.

Rmn = [ Wi (7)AWna(7)dT, where the elementes of vector /i has

componenets (i = > €Xi, iy = > _; €y, and i, = ), eiz;.

2 _ 2(2m)3cht
Amn = (4meg)3h |Rm"|



Optical spectroscopy
Linewidth

In our model the following assumptions have been made:
@ the molecule is isolated from the other ones,

@ the coordinate system is fixed to the molecule, that is, the
motion of the molecule with respect to the environment is not

considered,

o the lifetimes of the states are infinite (“stationary states”).



Optical spectroscopy
Linewidth

The broadening of spectral lines can be traced back to the
following reasons:

1. Interaction of the molecules. The energy levels of molecules are
perturbed by other molecules located closely, thus the energy levels
broaden. This effect is not quantized. The linewidth is determined

by this effect in solids, liquids, and high-pressure gases.



Optical spectroscopy
Linewidth

2. Doppler effect: the molecules are traveling with various velocities
and in various directions. The absorption frequency is modified by

their velocity relative to the detector
=v(1+Y)

The shape of the band reflects the (non-quantized) velocity
distribution of the molecules.

Equipartition theorem:

(Ein) = 3m(v?) = 3kg T => v oc Vkg T = 0v < £\/kg T =>

low temperature (FWHM decreases)



Optical spectroscopy
Linewidth

3. Natural line broadening (Fourier-limit)
The finite lifetime of the molecular states limits the accuracy of the
observed energy levels.
Broadening of the initial state: 7,AE,, > h
Broadening of the final state: 7,AE, > h
Similar to the Heisenberg uncertainty principle.
low pressure = deactivation decreases => T increases

It determines the minimal achievable linewidth!



Rotational spectrosc
Model: rigid rotor

It consists of point masses (the nuclei) and it is
@ a rotor (it rotates about its center of mass)

e rigid (it is not deformed by centrifugal forces, that is, bond

distances and angles are constant)



Rotational spectros

Moment of inertia

moment of inertia: | =), m;r;

r; is the distance to the rotation axis. (Not to the center of mass!)

I=3m,ri+ 3myr;




Rotational spectrosc

Principal axes of inertia

a, b, c - Cartesian coordinate system fixed to the molecule
axis a: the moment of inertia has its minimum value about it
axis ¢; the moment of inertia has its maximum value about it

axis b: the third perpendicular axis

/aglbglc



Rotational spectros

Classification of rotors

principal axes of inertia: I, < I, < I

Linear

@Q linear ,=0,lpb=1I.=1

H — ), =] — Sphencal
@ sphericaltop L =1, = 1. =1 b ¥ ! #
© symmetric top
Symmemc
] pr0|ate Ia = I“, Ib = Ic = IL rotor J&)

- oblate /a = /b = IJ_, /c = IH

Asymmetric /‘
. it
@ asymmetric top I, # I, # I, rorer 0 g : ?L



Rotational spectros
Linear rotor: HCN




Rotational spectros

Prolate symmetric rotor: met

(b)



Rotational spectros

Oblate symmetric rotor: benz




Rotational spectros

Spherical rotor: methane

[d)



Rotational spectros
Spherical rotor: sulfur hexafl




Rotational spectros

Asymmetric rotor: formaldeh




Rotational spectros
Asymmetric rotor: acrolein




Rotational spectrosc
Asymmetric rotor: pyrazine

- N

| b
]
H/E¥N%C\H

(h)




Rotational spectros

rotational spectroscopy, ener,

recall the particle on the sphere problem:

1 1 2 €2
classical — E = 5m\/2 == (mrv)

2 mr2 21
h2
quantum — E, =/¢(¢ + 1)5 £=0,1,2,..., m € [-4{]
1 J?
Ei=Zlw?=>1 ic(ab,c)
21;



Rotational spectrosc

rotational spectroscopy, ener,

spherical tops: I, =1, =1. =1

S+ S
21 -2/

classical = E =
h2
quantum — E; = J(J+ 1)5 J=0,1,2,...

i . B=1 2
rotational constant; B = Fe X 37

E
F(U)= 2 =BJU+1),J=012...

p=FJ+1)— F(J)=2B(J+1)



Rotational spectrosc

rotational spectroscopy, ener,

symmetric tops: I, =/, I = I = I, | is called the principal axis

2 2, 2
classical — E = 2J—7| + Jb2zjc

P=L+ I+
2oor-52 P 1 1
=22 2o o L2 (prol
a0, T2 2 {2/| 21, } J5 (prolate)

h2 h2 }‘,—L2 )
quantum — Ejx = J(_H_l)E + 2_IH _ m K

J=0,1,2,... K=0,+1,42,...,4+J

h h
F(J,K)=B 1 A — BYK? with B = A=
(4, K) J(J+ 1)+ ( VK= wit o and pEe



Rotational spectro

rotational spectroscopy, ene

F(J,K) = BJ(J+1)+ (A- B)K?
47TCIL 47TC/H




Rotational spectrosc

rotation in the laboratory-fixe

In general, the total angular
momentum (J) can be oriented in
2J + 1 directions,
My=—-J,—J+1,...,0—1,J.

(a)

M, magnetic quantum number.

The wave function depends on

quantum numbers: J,K, and M,




Rotational spectros

rotational spectroscopy, ener,

symmetric tops:

F(J,K)=BJ(J+1)+(A- B)K?

J=0,1,2,... K=0,+1,42,...,+J

; DK — cal E— 22 L 2 _ 2 — ] =
linear rotors: K = 0 (classical: E = 3+ 5 = 57, where [ = I, = I, )

F(J)=BJ(J+1),J=0,1.2,...
h

- 4rcl

spherical tops: A= B

F(J)=BJ(J+1),J=0,1,2,...
_h
" 4ncl




Rotational spectroscop

rotational spectroscopy, energy lev

degeneracy of the levels

e symmetric tops: 2(2J + 1), for K # 0, otherwise 2J + 1
(My=—J,—J+1,...,d—1,J)
F(J,K) = BJ(J+1)+ (A— B)K?

@ linear rotor: 2J +1
(My=—J,—J+1,...,—1,J)
F(J)=BJ(J+1),K=0

@ spherical tops: (2J+1)(2J+1)
(My=—J,—J+1,....,d, K=—J,—~J+1,...,J)

F(J)=BJ(J+1), A=B




Rotational spectrosc

Linear rotor, selection rules

@ The molecule must have a permanent dipole moment 3 (C,,
Cov, GCs), fiperm # 0. E.g., there is no observable rotation
spectra of the N, O5, Cly moleculs, but CO, HCI, HCN
moleculs have rotational spectra.

o AJ=+1
AE(J = J+ ) ==L (J+1)(J+2)-J(J+1) =
B(J4+1)=2B(J+1)

3When the transition moment is evaluated for all possible relative

orientations of the molecule wrt the photon: [uy,s41|* = | 552 * ttperm



Rotational spectros

Linear rotor, spectra

Smoothly increasing distances between the energy levels.

The spectrum is composed of equidistant lines.

Energy levels

J J(3+1) 4
0 0~ 8
1 2/ 2
N A 3
2 K 6
6
3 120 2
8
4 20 4 .




Rotational spectrosc

Linear rotor, spectra

Absorption frequencies: equidistant lines.
Intensity: first increases, then decreases.

I

e—ﬁB'J(]+l) 27+1

X T T

ANIIZA
N\

L N

=0 1 2 3 4 hy



Rotational spectrosco

Linear rotor, spectra

Two opposing effects.

Boltzman's distribution: The most populated state is the
ground state, the population of the states decreases with

increasing J, thus peaks of various intensities are expected.

M, quantum number: The number of degenerate states

increases with increasing J. (The statistical weight increases.)

The sum of the two contributions results in the maximum of

intensities (Temperature-dependent!)



Rotational spectrosc

rotational spectroscopy, popul

intensities depend on the population of the lower state
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Rotational spectrosc

rotational spectroscopy, popul
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Rotational spectrosc

rotational spectroscopy, CO m

F(J)=BJ(J+1),J=0,1,2,...
h

PJ+1e J)y=F(J+1)— F(J)=2B(J+1), and B =
4mcl

Isotope effects: 13C, 180
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Figure 5.3 Far-infrared spectrum of CO showing transitions with J” = 3 to 9. (Reproduced, with
permission, from Fleming, J. W. and Chamberlain, J., Infrared Phys., 14, 277, 1974. Copyright 1974
Pergamon Press)




Rotational spectrosc

rotational spectroscopy, popul

Frequency/GHz
40.0 38.0 36.0 34.0 32.0 30.0 28.0
J=14 J=13 J=12 J=11 J=10 J=9

Figure 5.4 Part of the microwave spectrum of cyanodiacetylene. (The many ‘satellite’ transitions
in each group are due to the molecule being in not only the zero-point vibrational state but also a
multitude of excited vibrational states.) (Reproduced, with permission, from Alexander, A. J., Kroto,
H. W. and Walton, D. R. M., J. Mol. Spectrosc., 62, 175, 1967)



Rotational spectros

Spherical rotor, selection rule

@ The molecule must have a permanent dipole moment,
Hperm # 0.
e — For each spherical rotor jiperm = 0, hence there is no

rotational spectrum.



Rotational spectrosc

Symmetric rotor, selection rul

@ The molecule must have a permanent dipole moment,

Hperm?éo-
o AJ=+1
o AK =0

Because of the last rule, equidistant lines are expected:
F(J+1)— F(J)=2B(J+1)
In practice a slight splitting wrt K is observed. (K=0 — 0,

K=1 — 1, K=2 — 2) (centrifugal distortion)



Rotational spectros

Symmetric rotor, selection rul

Rotational energy levels of prolate (a) and oblate (b) symmetric

rotors
J=0 J=1 J=2
*2
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—o0
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—0
— K=0
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Rotational spectrosco

Symmetric rotor, selection rules,

Splitting wrt K (K=0 — 0, K=1 — 1, K=2 — 2)

7 6 5 A 3 210 K

- T v T
2220 24240 2260
V/MHz

Splitting of the J=7 — J=8 transition wrt K in the rotational spectrum of SiHzNCS



Rotational spectrosc

Asymmetric rotor

Transition between the prolate and oblate symmetric rotors.

Asymmetry parameter:

Prolate symmetric

< lp= I,

_ 2’alb—lb(lb+la) — _1
(1)

— 2lale—lp(le+1a)
- Ib(’c—la)

Oblate symmetric

=1y < I

_ 2ale=la(lc+1)
K="y = L



Rotational spectrosc

Energy levels of the asymmetri

(a) prolate symmetric rotor, (b) oblate symmetric rotor, x

asymmetry parameter

Selection rule:
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Rotational spectrosc

Determination of molecular geom

Rotational transitions are located in the microwave(lmm-1cm) and

far infrared(0.03-1mm) regions.

On the abscissa, instead of \:

o frequency (v) in MHz or GHz in the microwave region

e wavenumbers (v*) in cm~1 in the far IR region



Rotational spectrosc

Determination of molecular geom

Molecular geometry

@ coordinates of nuclei (In rotational spectroscopy the
coordinates are given wrt the principal axes of inertia

a, b,and c.)

or:

@ bond lengths and bond angles calculated from the coordinates

of the nuclei



Rotational spectro

Determination of molecular g

Moments of
inertia

Microwave or far IR Coordinates of

absorption frequencies nuclei I

Bond lengths and
angles




Rotational spectrosc

Determination of molecular geom

How many independent bond lengths and angles does a H,O

molecule have?

d(H;—0O
PNy (H1—0)

Hi M 6(H1—O0—H)
The other parameters can be calculated from these ones if the

molecule is regarded as an isosceles triangle.
Pl. d(H,—O) = d(H;—0)
d(Hl—Hz) =2 d(Hl—O) Ccos [9(H1—O—H2)/2]



Rotational spectrosc

Determination of molecular geome

Cl

How many independent bond HG\ C|L P H,

lengths and angles does a CgH5Cl (3|6/OC|2

?

molecule have? I_|5/(35\C‘4/C:3\H3
Ha

d(Cs-Cl),

d(Ci-Ca), d(Ca-C3), d(C3-Ca),

d(
d(C2-Hz), d(C3-H3), d (C3-H3),
6C1CoCs), B(CoCsCa), H(C3CaCs), A(CIC1Co),
0(HaCaCs), O(HCCa), O(HaCaCs)



Rotational spectrosc

Determination of molecular geo

How many equations do we have for the calculation?

Threelll

l, = f,(d1, da, ..., 01, 0, ...)
|b=fb(d1,d2, ...,91,02, )
le = fe(d, da, ..., 01, 02, ...)



Rotational spectrosc

Determination of molecular geome

Solution: synthesis of isotopically substituted compounds and
measurement of their microwave spectra.

It can be assumed that upon substitution,

@ the changes in bond lengths and angles are negligible

@ the changes in moments of inertia are significant.

Thus we can derive enough equations for the determination of the

structure.



Rotational spectrosc

Determination of molecular geom

Example: determination of the molecular structure of carbamide

I
H1\ N1/C\N2/H4
A V
H2 HS

P. D. Godfrey, R. D. Brown, A. N. Hunter, J. Mol. Struct.
413-414, 405 (1997)



Rotational spectrosc

Determination of molecular geom

Isotopomers

HaN—CO-NH,
@)
HaN—CO-NHD ||

Hz'N—CO—'°NH, H
N 1\N/ \ /H4
HaN—C!80—NH,

H2 H3



Rotational spectrosc

Determination of molecular geom

Bond lengths (A)

c-0 1.2211 C-0-N;
C-N; 1.3779 N1—C-N»
Ni-H;  0.9978 C-N3—-Hi
Ni-H>  1.0212 C-N3-H>»
C-Nji-H>
@)

| conformers)

1 N2

A

Hy

Results

Bond angles (°)

Dihedral angles (characteristics of

122.64
114.71
119.21
112.78
118.61



Rotational spectrosc
Centrifugal distortion

rigid rotor so far (rotation has nothing to do with other internal coordinates)

centrifugal distortion (e.g., linear rotors)

@ F(J)=BJ(J+1)— D, (J+1)

. . . 3 A . -
@ D - centrifugal distortion constant (%&-), 0: vibrational wavenumber

Centrifugal
force



Rotational spectrosc
Stark effect

@ The electric field interacts with the permanent electric dipol

moment.

o Energy shift for a symmetric rotor: AE = —%, where £ is
the electric field and p is the permanent dipol moment of the

molecule.

@ For a linear rotor the energy shift is quadratic :

AE = o(J, M) 22,



Rotational spectrosc

Centrifugal distortion, spectra o

@ T4 molecules are spherical rotors (SiHa), pperm = 0.

@ centrifugal distortion = small permanent electric dipol moment —> weak rot.

spectra. Transition wavenumbers: o = 2B(J + 1)

— T

0.75+F 15-16 1617 17-18

18-19 ' ]
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Absorption coefficient x10-3/cm~1

O ] 1
60 80 100 120 135

Wavenumber/cm™"

Figure 5.10 Part of the far-infrared spectrum of silane. (Reproduced, with permission, from
Rosenberg, A. and Ozier, 1., Can. J. Phys., 52, 575, 1974)

@ No dipole moment is produced for O, (e.g., SFs) = no rotatialal spectra



Vibrational spectros

Energy levels

the harmonic oscillator problem:

1
— = — + — effective/reduced mass
12 mp my

Parabola
5
dv 1 (d?v) , g
V(X)_V(O)—i—{K}X—FE{m}X + ... %
2 dPv 1 3
—— 4+ —kxX®U = EV 5
e T =
1 1 ?J
2

Internuclear separation

1 k
EV:(V—i—E)hw, v=0,1,2,...; w= m



Vibrational spectrosco

Energy levels

energies in wavenumbers (vibrational terms)
1
E, =(v+ E)hw v=20,1,2 ... divide by hc

)= (v + ) v=012. ;7=

selection rule

@ the electric dipole moment must change during vibration

e Av=+1

@ infrared active/inactive vibrations
° AG(H%) = G(v+1) — G(v) = ¥ for all adjacent transitions

@ The absorption frequency is independent of the state from which the

transition takes place. It equals the eigenfrequency of the oscillator.



Vibrational spectrosc

Energy levels

Boltzmann population of the first vibrational excited state

1 < 0 fundamental transition

hcAG% = hcv = AE in wavenumbers
M — o~ DE/KT _ g—hci/kT
No

Ny

————— x 1009 59
No t Np X % < 5%

7> 600cm™! =

at room temperature (300K ~ 209 cm~!) practically only the

ground state is occupied



Vibrational spectros

Anharmonicity

Shortcomings of the quadratic
approximation: the vibration of

diatomics is not fully harmonic.

V(r) = hcD. {1 _ e,a(,,,e)}

A .
= 4D.' ° =\ 2heD.

Energy

where x. is the anharmonicity constant

Gv) = (v+ %)a v+ %)era

AG(H%) =G(v+1)—G(v)
=0 —-2(v+1)x

‘re
Internuclear Separation (r)



Vibrational spectrosc

Anharmonicity

harmonic: G(v) = (v + %)17 v=0,1,2,...
AG(v+%) = G(V+ 1) — G(V) =r
anharmonic: G(v) = (v + %)ﬁ —(v+ %)zxeﬁ +(v+ %)3yeﬁ, v=0,1,2,...
AG(V+%) = G(V+ 1) — G(V)

P=2(v+1)x0+...

Selection rule is derived for the harmonic oscillator: additional
weak absorption lines corresponding to the 'forbidden’ transitions

0—20— 3.



Vibrational spectros

Birge-Sponer extrapolation, ap

DOZAG%+AG%+AG§+'-':ZVAG(V+%)

Energy

‘re
Internuclear Separation (r)

= (1 « V)

AG,,,

E(Area = %1-0)

Linear
extrapolation

True curve

ol
ol
rofen]



Vibrational spectroscop

Vibration-rotation (rovibrational) s

The rotation and vibration cannot be entirely separated.
Both the vibrational and the rotational energy can change when absorbing a photon.

Rotational transitions accompany vibrational ones — band spectra
(close-spaced lines, 1-10 cm™?, around the vibrational lines, 1000-4000 cm™1)

rotation-vibration terms

@ rigid rotor - harmonic oscillator approximation
o S(v,J)=G(v) + F(J) = (v+ 3) + BJ(J + 1)
o Av ==£1, AJ = =1, piperm # 0 (selection rules)

e AJ=0is also allowed for NO molecule which have an angular

momentum about its axis (an unpaired electron)




Vibrational spectrosc

Rovibration spectroscopy, branc

S(v,J)=(v+ 3o+ BJJ+1)

in practice Av = +1 (excited states are not populated)

three combinations with J

@ P branch: AJ= -1, 9p(J)=S(v+1,J—-1)—=S(v,J) =0 —2BJ
@ Q branch: AJ= 0, Dg(J)=S(v+1,J)—S(v,J)="7

@ R branch: AJ=+1, ogr(J)=S(v+1,J+1)—S(v,J)=0+2B(J+1)




Vibrational spectrosc

Rovibration spectroscopy, bran

P branch: AJ =-1 Qbranch: AJ=0 R branch: AJ = +1
J=4 A 208
op(J) = —2BJ

J=3 A ? A 128 IjQ(J) — 5
TN A A @ r(J) =7 +2B(J +1)
J=1 28
=0 H 0B V=

—# A ' V=1
J=4 : 208
J=3 : 128
J=2 i 6B
J=1 28
J=0 B V=0

28 28 28 2B 28 28

-



Vibrational spectroscopy (d

Vibration-rotation spectrum of the HCI

Isotope effect: 35CI (75,77%), 37Cl (24,23%)

= ; t :
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P-branch: AJ = —1, Q-branch: AJ =0, R-branch: AJ = +1



Vibrational spectros

Rovibrational spectroscopy, co

S(v,d)=(v+ 3o+ BJIJ+1)

B
Method to determine the rotational k
constants:
pp(J) = — (B1 + Bo)J + (B1 — Bo)J?
ﬂQ(J) =0+ (B]_ — BO)J(J+ 1)
Pr(J) =P+ (B1 + Bo)(J 4+ 1) + (B1 — Bo)(J + 1)?
B,

Pr(J — 1) — Dp(J +1) = 4Bo(J +1/2)

R(J) — Dp(J) = 4B1(J + 1/2)

J+1

V- 1)

Vo(J+ 1)

ValJ)

Vo(J)

J-1



Vibrations of polyatomic molecules




Model: harmonic oscillator

* 3 or more point masses
* all points are connected to the others by springs

* it oscillates harmonically



Internal coordinates

* The vibrational problem can be solved in Cartesian
coordinates.

* For molecules 1t 1s more advantageous to use internal
coordinates.

* Number of internal coordinates: 3N-6.



Internal coordinates

. VXY - . :
bond-stretching
Y
angle-bending oYz \/\,/
X Z

torsion OWXYZ /;i Y
W
z
. ¢
out-of-plane TWXYZ



Normal modes (coordinates)

The motion of an oscillator consisting of several point masses 1s
complicated.

It can be resolved into 3N-6 normal modes. (N is the number of
point masses)

A normal mode 1s a vibration in which all the mass points

* have the same frequency

* move 1n phase



Description of the oscillator of
several degrees of freedom

Normal coordinate analysis

Input data | — Results

’ ® fr ncies of normal modes
® masses of the points equencies o1 no

® the normal modes (the
contributions of internal
coordinates)

® coordinates of the points
(at equilibrium)

® force constants



Normal coordinates

- 2 . . .

H,.=2 ﬁ %”’ ({q;},i=1,....,3N) q; 1s the displacement wrt the equilibrium geometry
i=1 i 04,

R 3N 4 2 ' . |

H, .= 5 aa ~+V({q"},i=1,...,3N) mass-weighted coordinates: ¢ =\V2M,q,
i=1 q 'i

Taylor serles 3N 1 & 3N oV 1 3N

| T Ly q'=0)+ : qits q.q';+

Z: 20 ; 0 i)q 0 2 Z_: 7.9 q=0 J

One can set the zero of the energy scale to have V({q’;

At the equilibrium geometry a@_V =0
i/q=0
3N 3N
5 1 9 1
H,=>>"%5+>> F,q'q
|:> nuc 1:126q'l-2 21’1221 Uqlq]

F,= 5.0 1s a symmetric matrix with real eigenvalues:
i¢4j

W=y



With indices: Z F, u = Al

J

|| MZ
Q'T.I
-Q
-Q
NJFA
M
:ﬁ
=

1 3N

2

E Qk Ql Z )\’k Qk
k:1

Among the eigenvalues there are six with zero value,
three rotational and three transitional degrees of freedom:

3N—-6 3N 6 3N—-6

— Z Z ¥y Q Z Hharm oscill .

1128Q 2

3N 6

Symmetry mmsss) Degeneracy: — Z A,Q = L 7 Ay > Q;

IEF




Force constants

Y
F.= =) 6.
] anaQ] i i

Derivatives of the potential energy wrt the internal coordinates

Generalization of the spring constant introduced for simple
harmonic oscillators

1 ) 1. differentiation a V 2. differentiation sz

——k —— —=k
VM = aq 0q0q



There 1s a separate Schrodinger equation for each normal mode.

For normal mode 1:

L0 Qv (0)=E,,(Q)
2 aQ l Vi \% |

It 1s similar to that of diatomic molecules.

Q, — normal coordinate 1, the motion of the atoms in
normal mode 1

A 1s related to the frequency of normal mode 1:
A= 4 vl-2

It can be solved!

10



The total vibrational energy and wave
function of the molecule

Eigenvalue: Eigenfunction:
JN—-6 o
(n;) _ l lpv: H qjv; (Qz)
Ew.—th. I’ll.+2 i=1

I1: product symbol, it
3N-6 implies the multiplication

F = Z E(nf) of all the factors

11



Interpretation of W

'P*v‘Pvis the probability density of finding the nuclei
in a given volume of space in the given vibrational
state.

The ¥, functions can also be classified according to
the molecular symmetry.

12



Selection rules

a)  An=%1,
An.,.=(

J#1
Only one normal mode can be excited by a photon

b) The dipole moment of the molecule must change during the
vibration (but no permanent dipole moment 1s required,
e.g.,CCl4, benzene)

c) Analyzing the J" W AW dr
transition moment it can be proven that the irrep of the normal

mode must be 1dentical to that for any component of the
translation, T,, T,, or T,

13



3N—-6 3N

Lp(vnonlnz...): H ani Ql):
i=1

Ho(x)zl,Hl(x)ZZX,H2=4x2—2, H3(x)=8x3—12x,...

2
2,2, Q
P i€T,

6

2

_%aiQi
e H_

\/ﬁle) 05-:\/7,-

i
5 9
i=1

3N— 130
2
2 _E Z a; Q; -
=1

(000 H —p 2 —e %

i=1
> o Z Q? commutes with the symmetry operations :>
P ieTl,
> 2,2, Q;
0

>3

el’,

1s a totally symmetric quantity (A.) :>

‘P(OOO'") . .
v 1s a totally symmetric state

To have a transition from the ground state
R, =[ WiuW dr#0 W= u=(u,u,,u,) w—)
W, u product should contain A :>

W, should transform as T , Ty, or T 14



Character table of the C,, point

group

Coy E C, o0yxz) o(yz)

A, +1 +1 +1 +1 | T,,0ux,0lyy,Olzy
A, +1 +1 -1 -1 R, Ol

B, +1 -1 +1 -1 T4 Ry,04,
B, +1 -1 -1 +1 T,,R,,a,

15



Example: normal modes of

formaldehyde[cm!]
o o s
Ty l 2785 | 1750
/H/ \H H/ &\H
O (a) 0, (a)
5 o
& 1165 <C 2850
_|_H/ \H_l_ H/ \H\
0, (b)) Qs (by)

O=O
[—
AN
o0
N

O; (a))

1250

0, (b))



Vibrational frequencies

symmetric CH stretching

CO stretching

CH, bending (scissoring)
out-of-plane bending (wagging)
antisymmetric CH stretching

CH, rocking

17



Formaldehyde gas IR spectra

Fercent Transmission

00—
1165 ernl
CHz wag
2785 el
o ':Hf- ceh 1485 ol
s sEretc CH- 1250 el
scizsar  CH2 rock
2850 cml
i 1750 el
asurm stretch crn
¥ C=0
o stretch
4000 3000 2000 1000 500
Frequency
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Absorbance

.06

.04~

02—

Formaldehyde gas IR spectra

A

M

|
3500

|
3000

| | | |
2500 2000 1500 1000

Wavenumber (cm-1) 19



Infrared spectra

20



Vibrational transitions:

They are located 1n the IR region
A=2-100 um

Features of the spectra:

Abscissa: wavenumbers (v* [cm!]) instead of A
Value: 4000-400 cm!

Ordinate: intensity

absorbance transmittance
I I
A=log—2 T:I—-100(%)

0

Sample: gas, liquid, solution, solid.

21



Sample preparation

Q

as:

* cuvette of 10-100 cm length with KBr windows
Solution:

* solvents: CCl,, CS,, or CH;CN, chloroform

* cuvette of a couple of um path length with KBr windows
Solid

* KBr pellet (grind with KBr, compression)

* film (the solution 1s placed on a KBr pellet, the solvent 1s
evaporated)

* paraffin suspension

22



The infrared spectrum of methane (part)
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The infrared spectrum of ammonia

WAVELENGTH IN ym

25 3 35 4 5 6 7 8 10 12 16
100 — j T T T—T T T T | -
‘ ﬁff

S 75 - | '
) o V
= i
1 7p)
=
= 50 - I
}.._
’-—
.
i)
&
L 25 -

i | | 1 | ] 1

4000 3000 2000 1600 1200 ?00 600

WAVENUMBER CM ™1

Symmetric rotor: energy of transitions depends on J and K:

relatively complex spectra
24



PERCENT TRANSMISSION

The 1nfrared spectrum of ammonia

WAVELENGTH IN ym
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The 1nfrared spectrum of acetanilide crystal in KBr pellet

. WAVELENGTH IN pym
2.5

PERCENT TRANSMISSION

7 8 10 12
100 1 T
75 /ﬂ |
M((‘Wﬁ
|
50 |- N |
25 |- |\ A_ | |
|
P S S & L
4000 3000 2000 1600 1200 900

WAVENUMBER CM™!

For liquid and solid samples there 1s no rotational fine structure.
crystals: splitting due to the lattice vibrations

26



Analytical application

Identification of functional groups

‘“‘characteristic vibrations’’: a normal mode 1s dominated
by one of the motions of a functional group, hence similar
absorption frequencies are expected for different
molecules including the same functional group

E.g..
vCH, 2860-2900 cm™ and 2950-3000 cm'!
vCH, 2840-2880 cm™' and 2920-2950 cm’

vC=0 1660-1720 cm!

27



Vanillin IR spectra (CCl, solution) characteristic

frequencies
100
—-—’-—W —.\ [}
' %3 Rt (R

H-C=0

stretch
|_
#
i
o 50—
i
r H
g
c 1034
g 3940
= O-H stretch

OCH3
D&H |"." lrogen C-0O
. bond stretching bands
vanillin
[CCly solution) 1695
C=0O stretch 1268
D""I — T — ]
4000 3000 2000 .4 1500 1000

wavenurmber cm
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Fourier-transform infrared

SPECIroscopy

29



Fourier transform
(mathematical summary)

Abbreviation for Fourier transform: FT.

It maps a function to another function, the independent
variables of the two functions are the reciprocal of each
other.

For instance: time-frequency

Flx(t)j=X[v)

30



Discrete Fourier transform

In the -a,a interval any f(t) function can be reperesented as a linear
combination of sin and cos functions: f(t Z c.¢i(t) , where

¢0(t):E
1 .
¢n(t):ﬁ5m<nz—jzt) n=2,46,. ..
0= cos(5), n=1357,..
a

These functions form an orthogonal basis set: f ¢.(t)g.(t)dt=6,

The coefficients can be easily obtained: ¢; —f @,(t

: nim
If a—-> o the possible values of w,= g become continuous

and we obtain the continuous Fourier transform 31



Fourier transform

Transformation from the time domain to the frequency domain

X(v)= [ xlt)espli2ve)d

t=—o0
Inverse transformation:
x(t)J==— | X(v)exp(—i2mvt)dt
t=—o0

Using Fuler’s formula:
+ 00

Xl | x(t)os(2mve)dtei | x(e)sn(2ave)d

[=—00 [=—0
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Fourier transform spectrometers

Fixed mirror

IR source I .
- Movable mirror,

p: optical path
difference

Beamsplitter

=

VIS detector He-Ne laser sample IR detector
Source: heated ceramic-coated wire or tungsten lamp

Detector: thermocouple or piroelectric crystal

33



Sum of the original and the shifted beam:

E(X, t):A(eiwt—ikx+eiwt—ik(x+p)

:Aeia)t—ikx(1+e—ikp)

The intensity 1s proportional to the square of E(x,t):
Toc|EP=A%e " e 1 k¥ 1 47 kP|(140™P|=2 A%(1+cos(kp)|=2 A(1+cos (2 7V p)]

: ~ : ~ 1 3 :
Constructive(vp=0,12....) or destructive(vp=-5,7,...) interference
(monochrome radiation, v : wavenumber, p: path difference)

I(p,v)=1(%)[1+cos(2x7Vp)

As the radiation has a contiguous spectra:

I(p)=J 1(p,%)dv=[ I(¥) 1+cos(2xVp)/d¥

1(p)-HE=Y

> 1(V)cos(2xVp)dV
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Directly measured: interferogram, 1(p)

Inverse FT
P specium 17

* All the radiation frequency i1s monitored simultaneously!

* Good sign-to-noise ratio

. Fast measurement: FT spectroscopy can be
applied to investigate processes in time

* F'T spectrometers can be combined with gas and liquid
chomatographs or microscopes

35



Interferogram for acetone vapor
OPD =0

“detector signal

R ... ¥ An.ﬂ__AAlL..AMA,J\ ALAAAAAAH o AW - N P

e T e D VA VAl ¥ AV § UUVVU V\]u LA VAR ¢ ER A V I ¥ S i i
> l'.
I

‘optical path diﬁ%rence
(OPD)
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The spectrum obtained by Fourier transform

K (b)

Arbtirary units

4230

Wavenumber (cm’') _
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Transmittance

"5 I R e tym—

The spectrum of acetone vapor after division by the background intensity

)

™M

|

Wavenumber feri-? ) | S T 4R30

" For larger molecules the individual rotational lines of the P, Q,
and R branches can not be seen, only the contour.
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ELECTRONIC STRUCTURE

OF MOLECULES

39



The model (Born-Oppenheimer approximation):

The nuclei are clamped, the electrons move 1n their field.

Schrodinger equation:
( Te+Vne+ Vee+Vnn )lpe: ( Ee+ Vnn) ‘er

: kinetic energy of the electrons

lﬂ>

o - attraction of the electrons and the nuclei

e - clectron-electron repulsion

<= < <

- nuclear attraction—a constant because of the
clamped nucle1 approximation.

nn

E » - clectronic energy

40



This differential equation cannot be solved
analytically, only approximate (numerical) solutions

are possible.
~\V/
/"& g

E.g, methods based on the variational principle (Hartree-
Fock)

41



Electronic states

Quantum chemistry:

- equilibrium geometry of molecules

- vibrational frequencies and normal modes
- charge distribution

- chemical reactions

- excited states

42



Example for photochemical reactions:

a photochrome pigment

NO-
CH3 CHj;
4
\ O
R
spiropyrane merocyanine
colorless red

ring opening under UV 1rradiation ring closure under visible (green) irradiation

43



How shall we choose the
electronic wave functions?

o

2

44



The molecular orbital model

LCAO-MO method

MO: molecular orbital

LCAOQO : linear combination of atomic orbitals

45



The approximate wave function 1s
written as a Slater-determinant

A row: an electron

A column: an MO

¢1a(1) ¢1/3(1> ¢Nﬁ(1)
w02 0u2) o By02

BioN) Gis(N) oo ()

There are no quantum numbers, but spin

46



[Linear combination

The molecular orbitals are constructed by linear
combination of atomic orbitals.

¢:NZC1°X1

N normalization factor

X i . atomic orbital

Ci : combination coefficient

47



Construction of molecular orbitals: those atomic
orbitals are combined

a) which lie closely in energy
b) which have significant overlap (or which are
core orbitals)

c) whose linear combination transforms according
to some 1rrep under the symmetry operations of the
point group of the molecule

48




Example: N, molecule

Simplest combinations:
® one atomic orbital from both atoms

ec,=c,=+l,orc,=+1,¢c,=-1

49



Example: N, molecule (1)

a) satisfied
@ @ b) satisfied

c) satisfied

50



25

Example: N, molecule (2)

= a) satisfied

b) satisfied

c) satisfied

51
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Example: N, molecule (3)

2p

a) satisfied
b) not satisfied

¢) not satisfied

52



Example: N, molecule (4)

25 sz
a) satisfied
b) satisfied

c¢) not satisfied
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Electronic structure of diatomic

molecules

54



Diatomic molecules

e

Homonuclear
(H,, N,, Cl,)

<\
Heteronuclear
(NO, CO, HCI)

55



E.g.: a homonuclear diatomic molecule, N,
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Simplest molecular orbitals: the linear combinations of
the 1dentical atomic orbitals of the two atoms.

6" (15)=7 [y (1s) (1)

§7(15)=— [ (18) 1]
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atomic ‘ molecular orhital

I S YONOL g, 2p
QQ 'lh %@GGGZD
& Q
) sz g O
PO
: . ny, 2P

.M @ i
\_
@\

©
@ @m

Construction of
molecular
orbitals from
atomic orbitals

58



¢+ : ““bonding’’ orbital (lower-energy combination)

d)_ : ““antibonding’’ orbital (higher-energy combination)

Notation:

* index : antibonding orbital

no index : bonding orbital

o -orbital : cylindrical symmetry around the bond

m -orbital : nodal plane going through the bond

(%4 29 3

g”’ index : symmetric wrt the inversion (gerade = even)
“0” index : antisymmetric wrt the inversion (ungerade = odd)

n-orbital : non-bonding molecular orbital

59



Note:

Molecular orbitals are
¥ L eigenfunctions with

m#, m=0,1,2,3,.. (o,n,6,...)
eigenvalues.

cylindrical symmetry

More than two atomic orbitals can also be combined.

60



Molecular orbital energy diagram for N,

c,2p
7/ AY
v N
/l/\ * * I\\\\
op—H%—"  Tg?Po TPy N 2p,
\x/ \"/ :x\ /x A2
2px’2py 77 RN 0] 2p v x & 2pX’ 2py
NN g ’
K ‘s
\\ \/\x/ \/\///
N/ N\ Z N7\
T,2Py, T 2Py
G 28
NN/ u
/// /\/\ \\\
e ~
2s PK— KK 2s
~ 4
~ '
AR VAV ; -
Gg S
G'1s
NN u
RaEravax ~
NN .7 N NCNZ
1s ZAWAN << R VAWAN 1s
~ 7
~ e
R VAV -
c,1s
o]
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Molecular orbital diagram for N,




MO diagram for N, : p combinations

-QuL
antibonding\ /o _— virtual

09:a2
/

S X TN /0 v O
bonding - OC'U?/\ occupied
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Electronic configuration

Ground state:

0,15 (0,1(o,25F (0,25 (1,2p)"(0,2p
Excited state, e.g.:

(0,15 (0,15)"(0,25)"(0,25)"(m,2p (0, 2p] (0,2 p]
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Singlet and triplet states

Excited state:

(0,15 (0,15)(0,25) (0,25 )"(m,2p)"(0,2p) (0,2

A A

A

v

S=0 S=1

Singlet state  Triplet state 6



Molecular orbitals of polyatomic
molecules

66



MOs of polyatomic molecules: in principle they are
constructed by combining the AOs of all the atoms.

PN

Core MOs Valence MOs

67



Core MOs:

The overlap between the core orbitals of different atoms 1s
very small. Therefore:

® the core orbaitals are localized on an atom (or on a
symmetric group of atoms)

e their shape and energy are hardly different from those of
the 1solated atom

68



Valence MOs: the AOs mix

Features:
Energy
Shape — localized or delocalized character
— point-group symmetry

69



Energy of valence MOs:

HOMO: highest occupied MO
LUMO: lowest unoccupied MO

70



Localized and delocalized MOs

* [ ocalized on an atom:
non-bonding electron pair
* [ ocalized on two atoms
o-bond: cylindrical symmetry
around the bond
n-bond: nodal plane through the
bond
® [ocalized on a functional group,
combination of the valence AOs of
many atoms

.

/

local

symmetry
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Molecular orbital energy
! diagram of formaldehyde

7(CO) ——=2b, O
|

/C\

H—¢ 1b H H

7(CO)
n(0[2p,]) e3¢ sa
0,(CH,) = 1b
(CH,) > 4a, * Molecular orbitals from a Hartree-
o(CO) ¢ 3a Fock calculation.
é-[i-s j "" ViV 5 ;‘1 """" . “mnpmal” basis set (STO-3G)
O[1s] X% 1a * Orbitals are not normalized
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2a,

la,

Core orbitals

-11.125 E

P oclpc[ls]

2a,

-20312 E

gy oc‘PO[ls]

la,
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Sigma bonding CO and symmetric bonding CH  orbitals

Pt

gy

-1.337 E
h
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bital of O

-bonding or

1C NON

d symmetr

sigma an

2

Antisymmetric CH

c0.44 W, , 1 +0.33W -,

+0.30 W,

1b,

[15]_ O'BO\IJHQ)[IS]

)

1

(
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bitals

Ing or

Pi and non-bond

76

87 lpo[sz]_O.lB Wc[sz]
or2p, ¥ 061 Wepo

2b,C 0.
—0
oc(0.68 W
-0443 E
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P1 CO and sigma CH_ antibonding orbitals

OCI.BO IPC[ZS]_O'44 ‘PC[

6 a, 2py]
~ o (CH,) ~0.89W,  —0.89W, |
6a
0.629 E_
NJT*(CO) OCO.77 lIIO[ZpZ]_O'BZ ‘PC[ZPZ]
2b,

0.282 E
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Oxazine 1
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HOMO

79
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Molecular orbitals Chemical bond

All the atoms contribute It connects two atoms
electronic excitation bond length
1onization valence vibration

Two different concepts!!!
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Electronic excitations in polyatomic

molecules

82



Electronic excitation in MO theory:

83



Electronic excitation in MO theory:

84



Energy and intensity of electronic
excitations: Main aspects

* Local symmetry of orbitals
* Symmetry of the electronic states

* Spin
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Classification of electronic transitions according to
the local symmetry (e.g., formaldehyde)

E )

typical order of the energy levels
(supposing a nonbonding electron pair)

60" * n—>c"
_)

4 * + n* (LUMO)

G“)TE* TC—)TC* n__l.)f,-c
n (HOMO)
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Order of excitation energies:

n->n* < ->1* ~ n->0* < o->1* ~ 1->0% < og->o%*

E )

60" * n—>c"
%
4 * + n* (LUMO)

G“)TE* TC—)TC* n__l.)f,-c
————————— n (HOMO)
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Selection rule:

Allowed: n->mt*, t->0*,
n->o0%*, o->0*

Forbidden: o->n*, m->0

60" * n—>c"
_)

I ? + n* (LUMO)

*
C—>T TC—)TC* nN—o7

L n  (HOMO)
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Symmetry (irreducible representation)
of electronic states

Example: formaldehyde
Point group: C,,
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Character table of the C, point group

Coy E alz)  0Wxz) 0(yz)

A +1 +1 +1 +1 | T,,0.C
As +1 +1 -1 -1 RX’c
B, +1 -1 +1 -1 T, Ii
B, +1 -1 -1 +1 Ty:RZ
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MO energy diagram of
_ formaldehyde

o*(CH,) —I1i
Valence shell
virtual orbitals
”.f?.().)..t. 2
n2<0[2px]) —¢ O
n(CO) =€ 1b Valence shell
m(02p,])  se—e 5a, occupied orbitals
0,(CH,) =% 1b,
Ol(CHz) a$ a$ 431
o(CO) ¢ 34
é'[i'sj "" —¥% 2, Inner shell
¢ |, .
O[1s] la, core orbitals



Electronic configurations of
formaldehyde

Electron configuration of the ground state:
(1a))*(2a,)*(3a,)*(4a,)*(1b,)*(5a,)*(1b,)*(2b,)’

n-yt* transition

v

Lowest-energy excited configuration:

(1a,)*(2a,)"(3a,)*(4a,)*(1b,)*(5a,)*(1b,)*(2b,)' (2b )
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Determination of the symmetry
(1irrep) of electronic states

Irrep of electronic states: the direct product of the irreps of the
singly occupied MOs

Direct product: multiplication of characters for each symmetry
operation.

Ground-state configuration : A, state

(la))*(2a,)*(3a,)*(4a,)*(1b,)*(5a,)*(1b,)*(2b,)

Closed-shell configurations always belong to the A, irrep.
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Lowest-energy excited configuration:

A, state

(1a,)*(2a,)*(3a,)*(4a,)*(1b,)*(5a,)*(1b,)*(2b,)' (2b )

E Clz) o) oy?)
B +1 -1 +1 -1
B, +1 -1 -1 +1
B xB,=A, +1 +1 -1 -1

Selection rule: a transition 1s allowed if the final state belongs to the
same irrep as any of the translations, T,, T, or T,

C2V E C ; (Z ) OV(XZ) ()'V(YZ)

Al +1 +1 +1 +1

As +1 +1 -1 -1
B, +1 -1 +1 -1
B, +1 -1 -1 +1

T4, 00,0ty Oz
RX) O(xy
Tx.Ry,04;
T,,R,,0;
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Spin:
Singlet and triplet states
(1a))*(2a,)*(3a,)*(4a,)*(1b,)*(5a,)*(1b,)*(2b,)' (2b ) !

A, state
/ \
A, A,
Singlet state Triplet state

2b, + =
3b, = 1t

95



So S S T,

S,: ground state
S,, S,: singlet excited states

T,, T,: triplet excited states
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Selection rule

Singlet-singlet
Triplet-triplet
Singlet-triplet

Triplet-singlet

AS =0

Allowed

Allowed

Forbidden

Forbidden
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Transitions in the electronic excitation spectrum of

formaldehyde
AEA 1 %
i RIVRERY
1000 ¢m ) ‘11 .
572_T \ B2(b2371c)
1 X
55541 — 3, (b,b!]
1 X
32.641 \ A2(b2b1)3
29.2 | _A*Aﬂbzb?)
Rk
1
01y A
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Ultraviolet-visible spectroscopy
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Excitation of core electrons: X-ray radiation

Excitation of valence electrons: UV and visible light.

A =100-1000 nm
Far (vacuum: O, and N_absorb here) UV region: 100-200 nm

Near UV: 200-400 nm
Visible region: 400-800 nm

Near IR region: from 800 nm.
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The spectrum:

Abscissa: A [nm]

Ordinate: intensity

absorbance transmission
I I
A=log— T:I—-1oo(%)

0

More frequently solvent samples are studied. (Solvent:

n-hexane(sigma-sigma* is the lowest tr.) , water or
ethanol (sigma-sigma*, n-sigma®*), etc.)
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Studied compounds

Organic compounds

a) molecules containing functional groups with both m-bonds and
nonbonding electron pairs (CO, CN, NO,-groups; n-rt* transitions)

b) molecules with weakly-bonded nonbonding electron pairs (Cl,
Br, I, Se-containing compounds; n-o™* transitions, above 200 nm)

¢) molecules containing conjugated mt-electron system (7t-mt™*
transitions, above 200 nm)
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Inorganic compounds

Transition metal complexes

The degenerate d or f orbitals of the metal atom split due to the
ligands. The energy difference between split orbitals 1s small.
These transitions are located in the UV-visible spectral region.

Theoretical fundamentals: ligand-field theory.
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Single-beam UV-visible absorption spectrophotometer

sample | concave grating

slits

light photodiode
source 104



Double-beam UV/VIS absorption spectrophotometer

Grating (it is slowly rotated during the measurement to scan the wavelength)

Empty cuvette (+solvent)

Slit Detectors

Light source Beam splitter
(polychromatic)

Reference Sample 105



40

3 (1000cm)

Electronic spectrum of
benzene (in ethanol)

Above the dissociation limit:
absorption 1s a continuum.
Below the dissociation limit:
electronic spectrum

contains the vibrational states.
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Electronic spectrum of benzene (gas phase)

N’: excitation from state a to state b of normal mode N
Normal mode 6:

1 A1
1,60
6 | o !
0 ~ ~
1,64 - ~
T |
@ apt | 7
e 1,6, °
é 15 61 / (’ ‘\
S 090
3 16 m QL0
T T I ] L o e
230 240 250 260 270 e excitation: ﬁ
Wavelength, A/nm —=
Figure 7.42 [ ow-resolution ;1182” — X' 1¢ absorption spectrum of benzene
L) (e1g)



Theory of fluorescence and
phosphorescence

108



Absorption: all compounds

Emission: few materials, mainly large, aromatic
compounds

Demonstration of emission: Jablonski diagram

(a schematic electronic energy diagram for
molecules with vibrational fine structure, so-
called *“vibronic’ states)
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singlet
absorption

Jablonski-diagram (fate of excited states)

triplet

absorption

A VR 1S ¢ | g
A % T 5

VR: vibrational relaxation
ISC: intersystem crossing
IC: internal conversion

S, T: singlet and triplet states

A~~~ Non-radiative transition

» radiative transition

4

V=0

Usually the triplet states have
lower energy (see: He atom)

Without radiations the
electrons are in the ground
state S_(see: Boltzmann dist.).

Due to the radiation the

state S, will be populated.
Io
fluorescence phosphorescence
{ ' - .
g L LAN Monochrome radiation: few vibr.
| Y

level will be populated,
polychrome rad: many occupied
vibr.states

vibrational relaxation: no radiation,
the extra energy transferred to the
solvent (rapid process, 107'*s).
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Jablonski-diagram (fate of excited states)

triplet Fluorescence: emission process where
absorption the 1nitial and final electronic states have
S, the same multiplicity. From the lowest S,

to one of the vib. states of SO.

2
g Due to VR the emitted radiation
10

T — 150 ]| has lower energy than the absorbed.

S 1 T ! ANANAAPD 5
R ¢ Typical for rigid molecules (fixed
singlet t i ol
Io
¢
g
Y

| I saturated rings).
absorption fluorescence phosphorescence

v - v IC: the liberated energy

y

Y .-y transforms into heat: rotational

and vibrational states will be
ISC: intersystem crossing:non-ratiative siglet-triplet excited. No radiation. No spin
transition. multiplicity changed. Typical
for flexible molecules.

5

Phosphorescence: forbidden at first order — small Photoinduced absorntion: S
probability, T has long lifetime in the order of I

eliminates a second photon.
111
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Phosphorescence

If the Hamiltonian does not contain the spin, the S 1s a good
quantum number, and the singlet-triplet transition is not
possible.

Due to the significant spin-orbit coupling, the spin of
molecule containing moderately heavy atom (e.g., sulfur) 1s
not a exact quantum number any more and the intersystem
crossing 1s possible.
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Absorption and emission spectra of the
Rodamine-B dye

Wavetength/ A

7000 6000 5000
1.0 ?ILUOR_]ESCEN[CE ! | ~]80:000
o8l s 1 -

| 60,000
0.6} N

- —140,000

O
rY
i

]

20,000

O
N
i

Fluorescence intensity.
(arbitrary scale)
eg /! mot-1 ¢m-!

Molar absorption coefficient

0 1 1 ] L | i o)
14000 16,000 18,000 20,000 22,000

Wavenumber/cm-1

f 113



Absorption and fluorescence

TS,

AE,=2h V'i Ahsnrpticli;"p Fluorescence

_ L 4
AE,=2hv }— v

S

0

AE(Syn,=0-S, n,=2)=AE,+2h V'

Intensity, /

AE(Syn,=0-S, n,=0)=
—AE(S, n,=0-S,n,=0)=AE,

Wavelength, A

AE(S,n,=0-3S,n,=2)=—(AE,—2hv)
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Fluorescence-spectroscopy

The emission 1s measured after the absorption of light.

This 1s mainly fluorescence (sometimes phosphorescence)
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The spectrum:

Abscissa: A [nm]

Ordinate: intensity
[, (arbitrary units)

®d.. fluorescence quantum yield

number of emitted photons
number of absorbed photons

OFES

Solvents: (see UV/VIS spectroscopy)
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Spectrofluorimeter

. Excitation monochromator
Grating

Light source

Sample * Detector Grating

Emission monochromator
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The advantages of fluorescence spectroscopy

1. Much higher sensitivity in contrast to absorption

experiments since the intensity 1s measured compared to I
=0 (““darkness’).

The 1deal concentration of a strongly fluorescing
compound 1s ~10-° M.

2. Double selectivity due to the

- wavelength of the absorbed light
- wavelength of the emitted light

Important analytical method!
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Optical rotation and circular
dichroism

There are many chiral compound 1n the living matter:

amino acids, sugars, amines, steroids, alkaloids,
terpenoids

These can be investigated by chiroptical methods:

optical rotation, optical rotatory dispersion (ORD),
circular dichroism (CD)

119



Linearly polarized light

120



Optical rotation

The solution of chiral molecules rotates the
plane of polarization:

A=[M]cl
[M] molar (optical) rotation
c concentration

t path length of the cuvette
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Molar optical rotation is wavelength-dependent

® Polarimeter: [M] 1s measured at a given
wavelength, usually at the D-line of Na ([M],)

[ M]

application: optical purity, 100x

[ ]pure enantiomer

® Spectropolarimeter: [M] - A spectrum is measured
(Optical rotatory dispersion, ORD)

application: structure analysis

122



a)

CD

by b b
= aATAIA i
| \,\L} /
(a) left (b) right

circularly-polarized light
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Circular dichroism

The absorption coefficients of the left and right
circularly-polarized light are different!

This effect 1s measured:
A =¢-ct,andA,=¢,¢c T
CD signal: AA=A, —A,=(g -¢g;) c T

CD spectrum: AA as a function of the wave length
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Example: CD spectrum of (R)- and
(S)-phenyl-ethyl-amine

)-FEA )-FEA
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CD spectrum of (R)-phenyl-ethyl-amine

CD-spectrum

10

0

Al 20

-40

-h0
GO0

Loo

HTM 400 -

300

il | .

230 240 260 280 300
Wavelength[nm]

200 '

absorption spectrum 126



CD spectrum of (R)- and (S)-phenyl-ethyl-amine

CD-spectrum\

60
M\ /k S-PEA
AU
50 | s | s |
600
500 w
HTv 400 [ \
300 |- / \
200 | : : : : :
230 240 260 280

] Wavelength[nm]
absorption spectrum
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Application of CD spectroscopy

1. Structure analysis: determination of the configuration

2. Analytical chemistry: measurement of the concentration
of chiral compounds

3. Analysis of biological systems (HPLC + CD
spectrometer)
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PHOTOELECTRON
SPECTROSCOPY

129



The fundamentals of photoelectron-
spectroscopical methods. The
Koopmans’ theorem
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Photoelectron spectroscopy = PES

A spectroscopical method based on 1onization!

® the sample 1s bombarded with monochromatic high-energy (far
UV or X-ray) photons, which 1onize the molecule

* the kinetic energies of the ejected electrons are measured, and the
lonization energy 1s calculated therefrom
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Molecular-orbital theory

¢ the electrons are in molecular orbitals

* the orbital energies (€.) can be calculated by quantum-
chemical methods (eigenvalues of the Fock operator)

Koopmans’ theorem: Ii = - €
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Tonization potential (energy): the energy required to
strip a molecule of an electron

An experimentally observable quantity

A molecule has n 10nization potentials with n being
the number of electrons.

Notation: L.

I. 1s the energy required to strip the molecule of the

ith electron after the first i — 1 have already been
removed
133



Ionization on the MO energy diagram

0
i
i+1 T l / €iv1
1 + Si
v
1-1 4 o
v 1-1
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The Koopmans’ theorem 1s a good
approximation only for the first ionization
potential, because the electrons reorganize
after 1onization, and the orbital energies of the
ions are different.
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Ionization: reaction equation

M + photon - M" + ¢
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Ionization: energy balance  photon energy
lonization potential

change in vibrational energy
change in rotational energy

kinetic energy of the
electron

kinetic energy of the 1on

1
hv=I+AE ,+AE__ M v+§ +v2

+
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The basic principle of photoelectron spectroscopy

| measured |

F_

ﬁ/H 1 1

hv=I+AE ,+AE__ *s

Photoelectron spectrum: distribution of the electronic kinetic energy

2
mve+2 Vo
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Ionizing radiations

Far UV light

It 1s capable of removing valence electrons

UPS = ultraviolet photoelectron spectroscopy

X-ray

It 1s also capable of removing core electrons
XPS = X-ray photoelectron spectroscopy
AES = Auger electron spectroscopy

XF = X-ray fluorescence
139



MO
energy

A

Electron spectroscopies

} core orbitals

hv e hv hv/e
N : |
UPS ' XPS ' AES
@ + (b (¢

S valence orbitals
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Stabilization after removing a core electron

Another (valence or core) electron falls down from a higher-energy
orbital, and the corresponding energy 1s released by

- ejecting a second electron—Auger-effect, experimental method:
Auger electron spectroscopy (AES)

- emitting an X-ray photon—X-ray fluorescence (XF), the frequency
of the emitted photon characterizes the element, XF 1s an
analytical method, e.g., determination of alloy composition
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Ultraviolet photoelectron
spectroscopy (UPS)

The valence electrons of molecules are ejected by far UV
photons.
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Light source

He discharge lamp.

He plasma (a plasma 1s a collection of ground- and excited-state
ions, atoms, and molecules as well as electrons)

Two lines are used:

He(I) radiation:
2'P, — 1'S, transition of the He atom
21.22 eV (AL =58.4 nm)

He(II) radiation:
n=2 — n=1 transition of the He" 1on

40.81 eV (A = 30.4 nm) 143



Components of a photoelectron

spectrometer
photons
slit electron energy
/ analyzer
target \ L\ e slit

chamber

=
-=
~
-~ ~
~ - ~~
~Z~< ~ =
~ ~ ~o -o
~ ~ S~
~
\\\\
~o ~J
~ ~
~
\\\
~.

electron
detector
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The Franck-Condon principle

The electronic excitation and 10nization are much
faster than the motion of the nucle1. Thus the change in
interatomic distances can be neglected during these
processes.
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Adiabatic 1onization potential: the difference between the
vibrational ground state of the 1on and the molecule

Vertical ionization potential: energy of the ionization at a fixed
internuclear distance. The resultant 1on is often in excited
vibrational state.

vir)
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The UPS spectrum of N,

18 75(9)
| 16 69(1)
‘ Lo’
5 57(9)
| »
o b L
| S5 B0 @5 B0 750 ‘ﬁﬁ Ro s Ro

Ionization energy/eV (1eV=8065.6 cm™ ) 147



MO energy diagram of N,

K== 2p,, 2p,

2s

X
X

X
X

1s

148



Application of UPS

Testing quantum-chemical methods

-\I | calculated
.= - &

1

Low-pressure samples!
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X-ray photoelectron spectroscopy
(XPS)

Both the core and the valence electrons can be ejected by
X-ray radiation.
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Sources of X-ray radiation

A metal target (usually Mg or Al) which is bombarded with high-
energy electrons resulting in ejecting electrons from the innermost
(n=1, ,,K”) shell. The vacancy is filled by an electron falling back
from the next highest energy shell (n=2, ,,L”), the energy 1s emitted
as characteristic X-ray.

Mg K lines: 1253.4 keV and 1253.7 keV
Al K lines: 1486.3 keV and 1486.7 keV

One component of the doublet is chosen by a quartz crystal (it
works as a diffraction grating).

Resolution: ~ 0.2 keV (1600 cm!), the vibrational fine structure
cannot be observed. 151



Applications of XPS

e the cross section of the 1onization due to X-rays is by 2-3
orders of magnitude smaller than that by far UV photons.

e thus 1t 1s mainly used for the analysis of solid samples.

* the 1onization potential of core electrons 1s characteristic
of the atoms, hence 1t can be applied to the determination
of the atomic composition of the samaples.

* chemical shift: provides info about the surrounding
elements

e the penetrability of X-rays is good, however, that of the
electrons is small, therefore the composition of the surface
of the sample 1s measured.

152
Surface analysis!



Components of an XP spectrometer
(the same as a UP spectrometer)

photons
slit electron energy
analyzer
Y L‘ / .
target e slit
chamber A/
N recorder

~ ~
~ ~ ~
~ ~ ~
~ ~ ~o
=~ ~o
~ ~ ~
~o ~
~ ~
~ S~
~<
~.

electron
detector
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XPS spectra of a 2:1 mixture of CO and CO, gases

O1ts Cis

co co, co Chemical shift
| e
| K
& 300F
. A
& 0} " N
100+

lonization eneraqy/eV
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XPS spectrum of Cu, Pd, and a 60% Cu
and 40% Pd alloy

397.4TeV .

Cu

Valence band

Ionization energy/eV
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394

energyjeV

XPS spectra of nitric oxide (NO) absorbed on an iron surface

1) Iron surface without NO at 85 K

2) Exposed to NO at 85 K and 2.65x10- Pa for 80 s

3) As for 2 but exposed for 200 s

4) As for 2 but exposed for 480 s

5) After warming to 280 K 156



LASERS AND LASER
SPECTROSCOPY

157



Laser: a source of strong, coherent, and near-monochromatic
light (electromagnetic radiation)

1 A S E R

Light Amplification by Stimulated Emission of Radiation

First laser: ruby laser

Theodore Maiman (1960)
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Application of lasers

optics

medical technology
military technology
informatics
material processing

applications 1n chemistry:
— Spectroscopy
— photochemistry

159



Operation of lasers

* Stimulated emission
* Population inversion

* Optical resonator
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Radiative transitions

T e =e=
|

:D" E, 45 E, {5 3

absorption spontaneous emission  stimulated emission
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i
|

Absorption

M1+hv—)M2

=>e

absorption

2 Rate equation:
N, : concentration of molecules 1n the initial
state

E; P, : concentration of photons

A, : rate constant of the absorption
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Spontaneous emission

N M, M +hv

Rate equation:

—dN ,/dt=dN,/dt=B,,N,

/{\ B,, : rate constant of the spontaneous

. E 1 emission

spontaneous emission
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Stimulated emission

— M,+hv=>M +2hy

=0 =k,

The frequency, direction, and
polarization of the emitted photon 1s
identical to those of the stimulating

photon.

b Rate equation:
=

dN,/dt=dN, /dt=A, N,p,

stimulated emission

A,, : rate constant of the stimulated emission
164



Einstein coetficients

At equilibrium the rate constants can not be independent:
Net effect of absorption+spontaneous emission+induced
emission to the population of state 2 is zero.

ApNyp,=By Ny= A, Nyp,=0
Connections among the three rate constants:

_ 8 thy” A

21 3 12
C

A=A,

B
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In lasers (there 1s no equilibrium!) the light 1s amplified by
stimulated emission, more photons are emitted by stimulated
emission than absorbed.

Stimulated emission:

—dN,/dt=dN, /dt=A, N,p
Absorption:

—dN /dt=A,, N p,
Since A,,=A,,, the condition for lasers:

N2>N1

(The spontaneous emission is 1gnored.)
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Inverse population

In thermal equilibrium: Boltzmann distribution
N,/N,=exp((E,-E,)/kT)

If T increases, N, approaches N,.

But N, <N, always holds.

In lasers N,>N,.

This state 1s referred to as inverse population.

No thermal equilibrium!

The establishment of inverse population is possible using special

systems of three or four energy levels.
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Pumping of lasers

Transmission of the energy to the laser is required for the
stimulated emission.

The pumping can be carried out in several ways:
- optical (flash lamp, light of another laser)
- electrical (discharge in gas)

- chemical (chemical reaction)
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Optical resonator

resonant optical cavity

active laser medium

ACAVAVAVAY

end mirror exit mirror
R=100% R=80-99%
T=1-20%

The active medium is placed between two mirrors.

The light 1s reflected back and forth, consequently the path
length of the photons, thus the likelihood of the stimulated

emission 1ncreases.
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Condition for constructive
interference

Standing waves:

A
L=m—
2
A\ - wavelength, m - integer

Frequency:

~C_mc
) 2L

%
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Spectrum of lasers

The gas lasers have some modes,
the dye lasers have infinitely many

Amplification
Maximal
amplific- Amplification curve
ation
Full width at half
‘ ‘ l maximum of the
| | transition (10°-10" nm)
FWHM ‘ Possible cavity modes
of mode l l' \
| I/ 1Y N | DR A [ A Y & SO || RO L G A P ‘ —_
N\ U U Gl -
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Types of lasers

(by the active medium)

doped 1nsulator lasers
semiconductor lasers
gas lasers

dye lasers
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Doped 1nsulator lasers

Active medium: 1onic insulator doped with metal 10ns

The laser radiation 1s produced by the doping ions.

Pumping: optical (white-light emitting lamp or semiconductor
laser)

« ruby laser (A1 0.:Cr)

* Nd:YAG laser

* titantum sapphire laser

active laser medium 173



Neodymium-YAG laser

Crystalline host: Y,Al.O,,

yttrium aluminium garnet = YAG

Dopant ion: Nd** (~1% by weight)
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Neodynium i1s the 60th element.

The electron configuration of the Nd atom:

KLM4s4p®4d 104 *5525p56>

The electron configuration of the Nd** 10n:

KIL.M4s?4p®4d*"

4P

5s25p°
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Energy levels of the Nd:YAG laser

states Large number broad

9/2 g
4 7/2 absorption lines
F 5/2
configuration et 312 =

3
4f 1064.3 nm
1064.8 nm
15/2
13/2 U
(L=6, s 3/2) ; ]”;;é

ground state

| P — >
vector model spin-orbit  crystal-field
coupling splitting 176




(Gas lasers

Active medium: pure gas (e.g., nitrogen laser)

gas mixture (e.g., carbon dioxide laser)

For a gas the absorption bands are narrow | >

Pumping: electrical (gas discharge)

Helium-neon laser (electronic tr., visible light)
Argon laser (electronic tr., visible) |

N, laser (electronic tr., UV light) iﬁi

mirror

CO, laser (vibrational tr., IR light)

CQO, Laser

R
supply = 12 EV 60 ma




Argon laser

Active medium: argon gas of ~0.5 Torr pressure, 1n a discharge tube

In the discharge - excited molecules
- ground-state 1ons } arise (plasma)
- excited 10ns

Operating characteristics of the discharge tube: current, voltage,
pressure, temperature—the population of various energy levels of
the Ar 1ons depends on these factors.

Population inversion can be achieved in particular excited states of
Ar ions wrt to the lower states.
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Ar 1s the 18th element.

Electron configuration of the Ar atom:

15225?2p®3s23p°

Ground-state electron configuration of the Ar*
1on:

1s22s*2p°3s?3p°
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Energy levels of the

2 -
KLastapip Dea argon atom
458.0 nm
‘DS.Q
514,55 nm
KL3s*3ps!
EFJM Y ¥
" 72 nm
]

KL3s%3p° —<

37 Ground state of the argon ion

Art + e recombination

KL3s%3p® 5 Ground state of the argon atom 180



The argon laser

dispersing -t 500V, 60A
element

N

exit mirror
R=98%. T=2%

cathode anode

end mirror
R=100%
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CO, laser

Active medium: ~ 1:1 mixture of CO, and N, gases

sealed: closed discharge tube of ~10 Torr pressure
open: gas flow through the cavity at ~ atmospheric pressure

The laser transition takes place between the excited vibrational
states of the CO, molecule, therefore infrared light 1s emaitted.

N, — buffer gas.
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Normal modes of the CO, molecule

symmetric stretching bending antisymmetric

stretching
—> —>» - —>

OCO?C?OCO

~./_

ViV, vy

Quantum numbers for the three normal modes.
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Energy levels relevant to the CO, laser

11k nitrogen <«—— carbon dioxide —

Energy (eV)
|
>l il
----I
ol

=N

1

5|

=3
;W

[S—
—
|

L]
I
I
I
]
I
I
14

I
-—
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Advantage:

the electric energy is efficiently converted to infrared light

Application:

* metal processing

* surgery

* spectroscopy: plasma generation
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The dye lasers

Active medium: solution of strongly fluorescing dyes.

Pumping: optical (white-light lamp or another laser).

Advantage: tunable

The laser transition takes place between the vibrational ground
state of the S, electronic state and the excited vibrational state of

S,

186



singlet
absorption

Jablonski-diagram

triplet
absorption
z b 15 ] ]

fluorescence

phosphorescence

Van

Y

y

VR: vibrational relaxation
ISC: intersystem crossing
IC: internal conversion

S, T: singlet and triplet states

V=0

A~~~ Non-radiative transition

» radiative transition
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A dye laser

pump mirror

: R=100%
end mirror

R=100%

exit mirror
R=85%
- ]
| | \_/ - collimating
filter thin etalon mirror
R=100%

The dye should be circulated to avoid the overheating o Stop



Spectral ranges of emission
bands for different laser dyes

Typicaloutput

power (W)
10 Polyphe DEOTC-P
’\ HITC -B
n //i\ \
0.01

400 500 600 700 800 900
Wavelength (nm)
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Mode-locking

electro-optic |
modulator —  Laser radiates at a number

of different frequencies:
M these modes have random

phases relative to each
L L
>

|| other. It is possible to lock
their phases together (see

Atkins).

2L _21.5 _
E.g., t=—"—= zzlo ®$=10000 ps 1 2L/c
3-10°— N
S

2 K

157

electro-optic modulator: refraction
coefficient 1s changed when voltage 5 [ " ' " "

1

electric field strength (a. u

applied, after each t period it lets a .\
short pulse to reflect from the mirror.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time {a. u.)
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Synchronous pumping

A mode-locked, non-tunable laser 1s employed to pump
another laser of the same optical cavity length.

Advantage: - tunable
- much shorter pulses

E.g.: the pulsewidth of the mode-locked argon laser 1s 300
ps, which 1s reduced to 10 ps when pumping a dye laser.
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Properties of the laser beam

They are superior in many aspects to those of the light
produced by conventional light sources.
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Power density

High power density within a small region.
Typical diameter of a laser beam 1s 1 mm?.

The power of laser beams varies from the mW to the kW region.
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High degree of collimation

The diameter of a laser beam does not change significantly
even at 100 m from the source (very nearly parallel front and
back mirrors )
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Spectral linewidth

Very thin linewidth, especially for gas lasers, e.g., that for
the 514.5 nm light of the argon laser 1s 10 nm.
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Short pulses

The pulse lasers generate pulses in the us (ruby laser,
Nd:YAG laser) or ns (N, laser) range.

Picosecond and femtosecond pulses are generated by mode-
locked lasers.
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Tuning the frequency of lasers

* dye laser

* non-linear materials (non-linearity 1s typically observed
only at very high light intensities)
- harmonic generation (2v, 3v, 4v)
- frequency conversion (v =v, +V,)

M-V AG

1064 nm

3w
— 355 nm
]
resonator -

N

——
optical parametric oscillator

¥oU o+ ¥
1" "2
1

Tunable by
\ changing the
" orientation or
the temperature.

]
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Raman scattering

198



Interactions of the photons and
molecules

absorption
emission
stimulated emission
elastic scattering
inelastic scattering
1onization

etc.
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Rayleigh scattering

Elastic scattering of light by molecules.

Elastic scattering involves no (or very small) loss or gain of
energy by the radiation.

Application: determination of particle size in colloids.

I

(0]

Blue sky and red sunset:  Toc—;
A
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Raman scattering

Inelastic scattering of photons by molecules.

The energy of both the photon and the molecule 1s changed:
- the molecule absorbs energy: Stokes scattering
- the molecule loses energy: anti-Stokes scattering

Rotational, vibrational, and electronic levels may all be
involved in Raman scattering.
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Sir CHANDRASEKHARA
VENKATA RAMAN (1888-1970)
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The Raman scattering process

E

| E

virtua N virtual N
A4
E E
A4
E E

(a) Stokes (b) anti-Stokes 203



The Raman spectrometer

1

continuous laser > sample —>—I

Stop

Y
signal-processing
electronics
e monochromator

photomultiplier
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Selection rules

They differ from those for the absorption and emission spectra:

#perm:q'd

In the case of the Raman scattering the induced dipole moment 1s
considered (not the permanent!).

B

IR

: polarizability tensor

E : electric field

1R

Hind —
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Polarizability tensor

O xx axy Oy,
@ Ay Uy, Ay,
Lon (Xzy a,

o symmetric tensor, thatis, o =a., o=

? Xy yX? Xz zX?

and o, = a.,,
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Rotational Raman spectra ot N

In contrast to conventional rotational spectroscopy,
molecules without permanent dipole moment also have
allowed rotational transitions.

A 4880A

- ot Nonlsnloon
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RAMAN DISPLACEMENT (cm™)
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Vibrational Raman spectra

Selection rules:

a) AVi:il,

only one normal vibration can be excited
b) Analyzing the _f W fting W dT

transition moment it can be proven that the irrep of the normal
mode must be 1dentical to that of any component of the
polarizability tensor a.

208



Character table of the C,, point

oroup

C,, E GGz Oyxz) O(yz)

A +1 +1 +1 +1 T, 0k, Olyy, Olzy
A, +1 +1 -1 -1 Ry, 0ly

B, +1 -1 +1 -1 T, Ry,00,
B, +1 -1 -1 +1 T,,R,,0,
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The infrared and Raman spectra
are complementary

The IR-forbidden vibrations may be active in the Raman
spectrum and vice versa.
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The vibrational spectrum of

crotonaldehyde
!; QWV('(WNAP\ R spectrum
: |

Wavenum ber /ecm~

(b)

Raman spectrum

llllllllllllllllll
T T

HyL et H s-trans-crotonaldehyde
AN 211



Vibrational wavenumbers of crotonaldehyde
(<) | | - vcm™!

Vibration" Approximate description
Infrared Raman
in-plane _
v, CH antisymmetric stretch on C=C 3042 - 3032
v, CH symmetric stretch on C=C 3002 3006
Vi CH, antisymmetric stretch 2944 S 2949
Ve CH, symmetric stretch : 2916 2918
Vs CH stretch on CHO 2727 . 2732
Ve C=0 stretch 1693 1682
v, C=C stretch 1641 1641
Va CH, antisymmetric deformation 1444 1445 !
Vo CH rock (in-plane bend} on CHO . 1389 1393 i
Vio CH, symmetric deformation 1375 {1380
Vi, CH symmetric deformation on C=C 1305 " 1306
Via CH antisymmetric deformation on C=C 1253 1252
Vi3 CH, in-plane rock 1075 1080
Vi C~-CHO stretch ' 1042 1046
Vs C—CH, stretch 931 931
Vie CH,—C=C bend 542 545
Vis C=C-C bend 459 464
Via C-C=0 bend 216 230 ;
Out-of-plane : |
Vio CH; antisymmetric stretch 2982 2976 |
Vo . CH, antisymmetric deformation 1444 1445
Vay CH, rock 1146 1149
Va2 CH antisymmetric* deformation on C=C 966 —
Va3 CH symmetric’ deformation on C=C _ 780
Via CH wag (out-of-plane bend) on CHO 727 —_—
Vs CH, bend 297 300 212
Va6 CH, torsion 173 —

Var CHO torsion 121 —



Advantages of Raman spectroscopy

* aqueous solutions can be used (the absorption of water 1s
strong over almost the entire IR range, but its Raman
scattering 1s weak)

* non-destructive technique (The solid sample does not need
to be ground with KBr and compressed to a pellet or to
dissolve, only to place in the path of the light.)

* resonance Raman-effect (The wavelength of the exciting
laser 1s within the electronic spectrum of a molecule. In
that case the intensity of some Raman-active vibrations
increases dramatically. Colorful components can be
detected at low concentrations, e.g., in biological samples.)
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Two-photon absorption

Rotational, vibrational, or electronic transitions when two photons
are absorbed by the molecule. Its probability 1s sufficiently larger 1f
the concentration of photons 1s high. It can be induced by pulse
lasers, but not by conventional light sources, and continuous lasers.

Most often, the two-photon absorption 1s used in electronic
spectroscopy.
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Energy levels in two-photon

absorption
HI! A HI! A
uli
My
H|f|l A
e E[m
uﬁ
H, H,
[ [

single tunable laser two lasers 215



Detection methods for two-photon absorption
Ionization continuum

The 2-photon absorption 1s a small perturbation

A
wrt the background.

Va

; ) A ; ) A
v, Fluoreszcencia Vs

E A Fluorescence E A
Va Va

_£
E E

(a) (b)

Either the total fluorescence intensity or the number of ions is proportional to
the 2-photon absorption. 216



Selection rules

They are different from those of the one-photon absorption.
They are similar to those of the Raman scattering.

The irrep of the wave function of the final state must be 1dentical
to that of any component of a.

Explanation: Raman scattering

Two-photon absorption } Two-photon processes

One-photon absorption

L One-photon processes
Spontaneous emission } p p
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Applications 1

la) Investigation of transitions which are forbidden in one-
photon absorption (because of the different selection rules)

1b) In the electronic spectrum transitions in the far UV range can
also be observed. For instance, instead of the absorption of a
photon of 150 nm, the transition can be induced by two photons

of 300 nm.
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Applications 2

2) High-resolution spectroscopy: elimination of the
Doppler broadening of spectral lines.

The consequence of Doppler effect:

—y(1+~
v —v(lic)

219



Elimination of Doppler
broadening

|:{><— . X
— () AE =2v L+C

. 6 . AE =v -2

C

V
1+—
C

+v =2V
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Two-photon spectrum of 1,4-difluorobenzene

two- photon energy /cm '

40000 39 000 38 000 37000 36 000
1 T -I- .'




Applications 3

3. Two-photon microscopy

The laser beam 1s focused onto the sample, due to the high photon
density, two-photon absorption takes place, which is indicated by
fluorescence. This is what 1s detected.

Advantage: the sample does not absorb at the wavelength of the
exciting light (in one-photon absorption), therefore

- thick layers can be studied,

- the destruction caused by the light 1s low
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Example: two-photon microscope 1image of ant cells
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Flash photolysis

The concentration of excited-state molecules most often
decreases according to first-order kinetics:

[M'] = [M*]gexp(-kt)

T = 1/k characteristic time
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Triplet state

T, = 10°-10° s
there 1s time for chemical reactions T T
Instrument: i T l T
simple pulse laser

S, S, T

+ photodiode or photomultiplier
+ electronics (oscilloscope)

Experimental method: flash-
photolysis
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Flash photolysis I

a) measurement of transient | continuous

absorption source grating
(lamp)
frequency-
doubling C Samp le
crystal
Nd:YAG pulse laser stop
1064 nm 532 nm or
355 nm or
. 266 nm

oscilloscope

detector

amp-
lifier

trig-
ger
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Flash photolysis II

b) measurement of transition

emission (fluorescence)

frequency-
doubling

crystal

Nd:YAG pulse laser

grating

oscilloscope

trlg—
ger

sample

stop

detector
e

amp-
IIIE%!II

227



1 i ——10°C
0.02 4 w 20 °C

\ 30 °C

Al —— 40 °C
—60°C

-
—
M
Crd
S
N

Time (us)

Decay of the triplet state of a porphyrin molecule dissolved
in the lipid bilayer of a phospholipid vesicle in the presence
of oxygen
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U o coatt T A5
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\\\ /// l phospholipid
= — bilayer
- vesicle - ggmgggg Qg Q; §Q§©
K N éé@lﬁ@%@@@é

/7 N\
/ \
s CY

P hydrophobic sensitizer

Idealized structure of a phospholipid vesicle with the most
probable location of the probe molecule.

229



0,06 A AB C
|
A .
0,05-
0,04
0,03
0,02

0,01 o A

0,00

#M5 420 425 430 435
wavelength (nm) o

Absorption spectrum of triplet antracene

A: 1n hexane

B: in a phospholipid vesicle at 25 °C

C: 1n a phospholipid vesicle at 18 °C 230



260
240 I
220 s
200 1
180 |
160 ]
140 ]
120 |
100 ]
8o |
_5E-05 5E-05 0.00015 0.00025 0.00035

intensity of light (mV)

time (s)

Decrease of the acceptor reacting with singlet oxygen by
measuring the absorbance of the acceptor
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0.03

o
o
N
N

0.018

0.012

IR intensity (V)

0.006

0
-0.05 O 0.05 0.1 0.15 0.2 0.25 0.3

time (ms)

IR emission signal of singlet oxygen in the presence of
hematoporphyrin sensitizer. (Thick line: extrapolation)
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The pump and probe experiment
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Singlet states
T, 1011-10% s

there 1s no time for chemical
reactions

Instrument

mode-locked laser

+ fast photodiode or
photomultiplier

+ electronics (lock-1n amplifier)

Experimental method: pump and
probe experiment

—— 1
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The pump and probe experiment

J10000ps

10-20 ps

beam
splitter

| DCM dye laser

corner mirror

argon laser

>

R6G dye laser

probe beam <>
> )J>
sample

" dichroic
mirror
/ v
pump beam
[
detector
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Signal

Decay of the transient absorption of Nile Blue

solvent: ethyleneglycol

temperature: 20 °C
40 °C
60 °C

500 Time [ps]1000
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The transient absorption 1s the
resultant of several factors:

- bleaching: decrease of the population of the S,
state (the intensity of the probe beam increases)

- stimulated emission: increase of the population of
the S, state (the intensity of the probe beam

Increases)

- S, = S, absorption: (the intensity of the probe

beam decreases)

237



ENERGY LEVELS OF NUCLEI
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The nuclear shell model
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Nuclear shell model
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The angular momentum of
nucleons due to spin

S proton )|=|S  neutron ||=|S electron )|=1'S (S+1)#

§=1/2

(Protons and neutrons are particles of 1/2 spin like the
electrons.)
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Nuclear shell model

* used for the description of quantum states of the
nuclel

* 1t 1s similar to the model applied to polyatomic
molecules, which introduces the electron shells.

(It 1s more complicated, because there are two types

of nucleons.) 242



Characterization of the quantum states of the
nucle1
(Results of the nuclear shell model)

The states of the nucle1 are characterized by
two quantum numbers:

- I: nuclear spin quantum number

- M;: nuclear magnetic quantum number

243



Nuclear quantum numbers

I: nuclear spin quantum number

[ is defined by the atomic number and the mass number.

atomic number mass number possible values of 1

even even 1t 1s zero

even odd half-integers (1/2, 3/2, 5/2...)
odd even integers (1,2,3...)

odd odd half-integers (1/2, 3/2, 5/2...)

M, : values of the nuclear spin quantum number :

M, =11, ..., -L
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Energy of nucle1

Without magnetic field it depends on I and it 1s
degenerate (M,-fold degeneracy).

In magnetic field this degeneracy 1s lifted.
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Excitation of nuclei

* Mossbauer effect: I 1s modified, excitation
with gamma-photon

* Nuclear magnetic resonance: M; 1s modified
(in magnetic field), excitation with radio-
frequency pulse
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Mossbauer-etfect

- Transition involves the change of nuclear spin

quantum number 1.

- Large energy y-radiation

- Recoilless nuclear resonance fluorescence

- Vary narrow linewidth messl-

small energy shifts
correspond to large
changes in absorbance
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Mossbauer effect

Radiation source:
compounds containing the same type of nucle1 which are under
investigaﬁon in the sample

\ ground state

excited state

Excited nucle1 of the compounds serves as a radiation source appear
from radioactive decay.
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Example: Mossbauer-absorption of °"Fe-
nucleus using °’Co 1sotop as the radiation
source

Electron capture (K-capture)

5/2 /
137kEY | A3keY
]
[9%) (91%)
32 v
14 4 ke

=17 %

57

Fe

STCD

A — NA '
, X+te 2, X'+v,
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Mossbauer-spectroscopy

Mossbauer-effect can be utilized in the structural
chemistry.

Roughtly the half of the chemical elements of the
periodic system can be studied using the Mossbauer-
spectroscopy.

There 1s a need for a radioactive parent (nucleus with
atomic number one unit greater) which dacays to the
excited state of the investigated nucleus.

Some frequently studed nuclei: 57Fe, 119Sn, 121Sb, 125Te.
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Experimental technique

Tuning of the source of y-radiation using Doppler-effect: The
radiation source 1s moved wrt the sample.

v=y 1+ 2

C

Absorption 1s measured while changing v systematically.

Detector: intenzity of the y-radiation 1s measured by a Nal
crystal. The y-photon can strip an electron from one of the
I" 10n of the Nal crystal. The current is detected. The
current 1s amplified by an electron multiplier.
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Properties of spectra

* Chemical shift: the absorbed frequency is characteristic
to the nuclei but 1t also depends slightly on the electronic
density of surrounding atoms, thus the spectrum contains
information about the molecular structure as well.

* Quadruple splitting: the quadruple moment 1s a property
of charge distribution. If the nucleus has a quadruple
moment (the charge distribution 1s not spherically
symmetric) than the energy levels (belonging to quantum
number I) are split.

* Magnetic splitting: in magnetic field the energy of states
characterized by quantum number I are broken according
to M,. Observable:

— 1n external magnetic field

— 1n internal magnetic field (e.g., in ferromagnetic material) 252



Tr.

5,0

49

Fey(CO),, -

Mossbauer spectra

ymmos

Two excited levels due to
the quadruple spitting

According to the
chemical environment
two peaks are expected
with 2:1 intensity.
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First Méssbauer Spectrum Recorded on Martian Surface
Guseyv Crater, January 17, 2004 (3h25min)

k Fe”/Fe . ~06

BFe(2+) Olivine
MFe(2+) Silicate '
Fe(3+)

Velocity [mm/s]

Figure 4. Very first Mossbauer spectrum ever taken on an extraterrestrial surface. The data from
the Martian soil at the Spirit landing site were taken on sol ( = Martian day) 13 of operations.

“With MIMOS 11, besides other minerals the Fe silicate olivine has been identified in both soil and rocks at
both landing sites. At the Meridiani site the Fe sulfate jarosite has been identified by MIMOS II which is
definitive mineralogical proof of the presence of water at this site in the past.” (Hyperfine Interactions (2004)
158:117-124)
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Applications 1n structural chemistry

* Metal complexes

* Corrosion — the atoms 1n the different
oxidized state affected by different
chemical shifts

* Magnetic alloys (internal magnetic field)
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Nuclear magnetic resonance
spectroscopy (NMR)
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Absorption of nucle1 1n magnetic
field

Mossbauer effect

Without magnetic field it 1s I dependent,
degenerate according to M,

Nuclear magnetic resonance

In magnetic field: energy of states depend on I
and M,

257



Magnetic nuclear resonance

/ M =-3/2
M= Transition with changing

M, and constant I value.

Yoo

&
= 45/

N e— M= +1/2

N m-.p  Magnetic field 1s needed!

s

Mlz -142
-
/
=12 ———
—— M=+12

magnetic field

Absorption of radio wave radiation )58



Nuclear spin, angular momentum, and
magnetic moment

Eigenvalues of the L? and L, operators: #°I(I+1) and A M,
M=-1,-I+1, ... .1

Nuclear spin N ~» Nuclear magnetic moment
g: ,J];arﬁde-factor” - oh
W, : bohr-magneton of nucleus = —
I'ln Zmn

(nuclear magneton)
m_ : mass of nucleus

Eigenvalues of the M’and M operators: ¢g*I(I+1)u’ and gM,u,
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Potential energy of a particle with magnetic
moment

Classical physics: .
g ; tic inducti
V=—M-B B : magnetic induction

In magnetic field oriented 1n the direction of z axis,
V=—M’|B]

In quantum mechanics:

MZ:gMII'ln

V=—gM,pu,|B|
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'H

B(j

Most frequently investigated nuclei
in NMR spectroscopy: 'H, 1°C

Atomic
number

cven

cven

Mass I (ground M, g-factor
number state)

odd 1/2 +1/2,-1/2  5.586

odd 1/2 +1/2,-1/2 1.405
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Splitting as a function of
magnetic field

Energy of E 4 / M, =-1/2
M, = +1/2 state:

1 AEzgpn|§|=hv
EIZ_E gl“ln|B|

B|

Energy of
M, = -1/2 state:

1 -
E2:+§8Hn|B| . M, = +1/2
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Transitions between the nuclear
states of 'H and 3C

M,=+1/2 &—» M,=-1/2
The transition 1s allowed!

AE=gpn |B|=hv
Energy of absorbed photon:

_AE _8u,/B
" h h

Vv
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Absorption NMR frequencies of
nuclei

In |B|=1T magnetic field

Nucleus Natural I (ground state) v (MHz)
occurrence(%o)

'H 99.98 1/2 42.58

"B 81.17 3/2 13.66

BC 1.11 1/2 10.70

PF 100.0 1/2 40.06
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Properties of NMR spectra I
Chemical shift
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'H NMR spectrum of Ethylbenzene
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Chemical shift

Chemical shift: the characteristic atomic absorption (emission,

ionization) frequency is slightly modified by surrounding
molecular enviroment.

Detectable:

* XPS (1onization energy of atomic core)

* Mossbauer-effect (changing of nuclear energy due to the
absorption of a y-photon)

* Magnetic nuclear resonance (transition between magnetic
energy levels due to absorption of radio wave radiation)
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Chemical shift in the NMR
spectrum

In the magnetic field electrons around a nucleus will circulate
and create a secondary induced magnetic field.

N o : sheltering coefficient
— B( 1—0 ) o positive: diamagnetic sheltering
0 negative: paramagnetic sheltering

Blok

Due to the chemical shift the absorption frequency is
modified:
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In the NMR-spectrum the “relative change” wrt a reference
absorption frequency is given:

Vv 0 :chemical shift
N v, (the phenomenon 1s
hoosine th also called chemical
Choosing the v, shift!)
theoretical possibility: v of an i1solated Chemical shift o 1s
nuclel usually expressed in
practical solution: v of an atom of a chosen parts per million (ppm)
by frequency
compound
. CHj;
Most frequently applied reference CHa IS'— CH
molecule: Tetramethylsilane (TMYS) 3 & IH 3
3

advantage of TMS: single absorption signal
for both 'H and °C
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An advantage of 0 to v: it is independent of magnetic field

Examples:

How many spectral lines can be found in the H' NMR
spectrum of 1sopropanol or in the spectrum of acetone?

O
OH 152.0 pm ||I1213'C’m
H /C

l 116.0° IA/E?)pm
HH HH

The set of chemical shifts of nucle1 'H, *C is characteristic
property of the functional groups.
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9 J9

J

(CH,),CHOH
O
1]
CH,CCH,
doublet so n=1
Isopropanal Acetone only contains a single type of hydrogen atom, so

3 types of H we only see a single peak at about 2.2 ppm.
CH deshielded by O and split

into 7 lines by 2 equivalent This is very slightly deshielded due to the proximity of the

singlet
methyl groups dugtu Ol carbonyl group.
. No integral since integration gives the relative number of
;g?hﬁ?raxig&?ﬂg o not couple H of each type and we only have one type.
7 lines, so n=6 THMS
deshielded by O
Iml. i
integral 1 1 6
| T | T | T | T | T | T | T | T | T | T | T | | T | T | T | T | T | T | T | T | T | T | T |
11 1 9 B 7 g 5 4 3 2 1 0 11w 9 8 7 6 5 4 3 2 1 0
pPpm ppm

http://www.mhhe.com/physsci/chemistry/carey/student/olc/graphics/carey04oc/ch13/figures/hiproh.gif
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'H chemical shifts

Z
:
—
—
—~
=1
(<
oo
—
>
<
=
<o
~
—
==}
—~
~

Fen-CH, )

Si(CH,), i

tercC_H

=C-H

CO0-CH,

Ar-CH3

=0-CH,-C

/N

=(-CH,-0-

=

=0 -CH,N

/\

=0 CH,-00-

=(-CH,-0-

Ar-CH,-C

Ar-CH N

Ar-CH,-0-

=0 H-

ATH

00 -NH-C

-CO0H

R-CHO

R-0H
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3C chemical shifts

200 150 100

50
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Properties of NMR spectrum 11
Spin-spin coupling

Spin-spin coupling: interaction between the magnetic
moments of the NMR-active nuclei of molecule.

mmm) Splitting of NMR bands.
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In the *C spectrum peaks with 1:2:1 relative intensities due to
the interaction of *C and the two 'H nuclei.
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The energy of °C in the CH, group with the spin-spin coupling:

E=—g M,y C[Bl+J%M C(M"+M")

JE1 . C-H coupling constant

Excitation: M{=+ % >M¢ :_%

AE:gBCin|]§\+JCH(M?l+M?Z)

MIHI MIH2 ECH
+1/2  +1/2 + JcH
+1/2  -1/2 0

-12  +172 0
-1/2 -1/2  -JH 276



Coupling constant depends on

* the type of interacting atom pair (e.g., 'H-1H,
tH-13C, tH-19F, 13C-13C coupling)

* the atomic distance

* the type of chemical bound

It does not depend on the magnetic field!
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Units of coupling constant:

J/h,  JH/h, JC¢/h, etc.
[Hz]
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Chemically equivalent nuclei:

- they are related by a symmetry operation of the molecule
(same chemical shifts)

e.g., -3 protons of CH,,
- 2 protons of CH.,.

Magnetically equivalent nuclei:

- Nucler are magnetically equivalent if they have 1dentical spin—
spin interactions with any other nuclei in the molecule.
Magnetically equivalent nuclei are chemically equivalent as well.

- Due to the rapid internal rotations the protons of the CH, group
can be magnetically equivalent.
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Difluoromethane and Vinylidene fluoride

-

Cii,,
|:/ \ H
H

The two H atoms are symmetrically
connected to both F atoms, they are
magnetically equivalent.

A\
\,

The two H atoms are chemically equivalent,
but magnetically not.
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Interpretation of NMR spectrum

Based on the chemical shifts and the spin-spin coupling

1* order spin-spin coupling: chemical shifts are much larger
than the value of the spin-spin coupling constant. Simple
interpretation.
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'H NMR spectrum of the Ethylbenzene

In the simplest cases (lin.
molecules) the intensities
are proportional to the
number of nuclei

200 00 0 U[Hl]

AT LARRLEERE LAY |




Rules of spin-spin coupling 1n the
'H NMR spectra

* Interaction of magnetically equivalent protons bounded
to the same carbon does not cause splitting.

* The spin-spin interaction between protons of
neighboring carbons do cause well-detectable splitting.

* Interaction between protons far from each other 1s weak
in the case of aliphatic compounds. The splittings due to
these weak interactions are detectable only 1n high
resolution measurements. Interactions of protons
connected by conjugated C-C bounds is stronger.
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'H NMR spectrum of Ethylbenzene

Splittings 1n the spectrum of the CH, group (due to the CH,

group)

AE=g "y B|B|+J" (M "+ M *)

MIHI
+1/2
+1/2
-1/2
-1/2

M} EHH
+1/2 JHH

120 1:2:1
+1/2 0

-1/2 - JHH
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'H NMR spectrum of Ethylbenzene
Spitting of the band of CH, group ( due to CH, group)

AE :ng[J;H|E|+JH1H2(M?1+M?2)

e

MIHI
+1/2
+1/2
+1/2
-1/2
+1/2
-1/2
-1/2
-1/2

1:3:3:1

MIH2
+1/2
+1/2
-1/2
+1/2
-1/2
+1/2
-1/2
-1/2

MIH3
+1/2
-1/2
+1/2
+1/2
-1/2
-1/2
+1/2
-1/2

EHH

+3/2 JHH
+1/2 JHH
+1/2 JHH
+1/2 JHH
-1/2 JHH
-1/2 JHH
-1/2 JHH
-3/2 JHH
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The chemical formula of molecule can be
obtained from the NMR spectrum.
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Spin-spin interactions in the 3C spectra
. 13C 13C - CH I_I1 H2
AE=g “p °|B|l+J" (M, '+ M,")

The bands of *C atoms are splitted by their hydrogen

neighbors. MM MM EC
CH group 1:1 doublet +1/2  +1/2  JH
+1/2  -1/2 0

CH, group 1:2:1 triplet 12 4172 0

CH, group 1:3:3:1 quartet -2 -1/2 -JcH
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BC NMR spectrum of 1,3-butanediol
(with and without proton decoupling)

A strong, resonant
radiofrequency pulse is
used to excites the H
nuclei.

59‘3 63‘2 | i}l'-c,a - ?.ﬁg All proton couplings
0) -

have been removed

- d ¢ lppm]



NMR spectroscopy

In most of the cases solutions are studied.

Deuterated solvents: chloroform-d (CDCl,,, aceton-D, (To

avoid the absorption of protons, 'H of the solvent are replaced
by deuterium.)

TMS 1s also added.
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The NMR signal 1s weak

IH 1

- N(MI:_E)

| B‘:lT —=0,999993
N(M,=+=)

t=25°C 2

Reason: small excitation energy

The probability of the absorption and induced emission 1s
almost the same.

Due to the excitations during the measurement shift this
ratio closer to one.

Relaxation processes: nuclei return to the ground state 1n

non-radiative processes.
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NMR spectrometer

Ho Sample tube

The difference 1n resonance
frequencies increases with B,
but spin—spin coupling
constants are independent of it.

—
T —_

| -,

0 Strong magnetic field:
oAl Many 1* order details

_|—|_‘__r -

radio frequency
inpui

e .

Pulse techniques in NMR:
FT-NMR

291



Excitation pulse sequence and its Fourier transform in

FT-NMR

t

s

)

-:—tp—h-

V=11,

292



a) Free induction decay (FID) courve of ethylbenzene in
deuteroacetone solution b) Fourier transform C-NMR
spectrum
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Magnetic resonance 1maging

4
(@)
(@\l
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Mass spectrometry (MS)

* Separation of 1solated, 1onised particles
according to the mass/charge ratio

* Main elementes of the mass spectrometer:

Ion source

Ion

accelerator |

Mass
analyzer

L} Detector
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Single-focus mass spectrometer

Ion source

Slit

Magnetic field

Detector slit
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Single-focus mass spectrometer:

Sample is ionized, ions are accelerated in
electric field than separated in magnetic field.

Mass and charge of particles: m, e.

Voltage of acceleration: U

. . 1 \
A kinetic energy: —mv'=eU W) vi=—-
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Magnetic field is homogeneous

(The magnetic field is perpendicular to the
velocity of entering particles.)

| orentz force:

-

F=e-VXB

€ [As]: ionic charge
v [m/s]: speed of the ion
B [Tesla = N/Am = Vs/m?]: magnetic field
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Circular motion due to the force perpepdicular to
the velocity (centripetal force). o |

@)
Arﬂ

-3
Q

B

Right-hand rule

B: perpendicular to the sheet.
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——=RB:e-v
r
Ber
y=——
m
, BZ 2 2
Vo= >
m
2 2
m_B'r
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Separation of charged particles in magnetic field

slit
— larger
— m
smaller /‘ ¢
m

- 1l

slit
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Methods of ionization

a) Electron collision ionization
M+e > M +2e (positive ion)

M+e > M (negative ion)

The positive ions are more stable.
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Fragmentation

The ions can further dissociate in parallel
and consecutive reactions:

M ">A +B+...
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b) Chemical ionization: large quantity
reagent gas (CH,, NH,, isobutan).

Mainly the reagent gases are ionized (most

of the are MH*) and collide the investigated
molecules.

The spectrum is relatively simple.
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c) Secondary lon Mass Spectrometry, SIMS

Solid sample is bombarded by Ar* or O,* ions.

Atoms and ions leave the surface. mmm)

Method for investigation of surfaces.
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d) Fast Atomic Bombardment (FAB)

Non volatile sample

The sample is dissolved (e.qg., in glycerol).

Bombardment with neutral atoms (Ar, Xe)

FAB can be applied for the study of biological
and medical sample.
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e) Electrospray lonisation (ESI)

3000 V

Biological macromolecules
1In 10N1C vapor

Ion formation involves extensive solvent
evaporation.
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MALDI = matrix-assisted laser desorption-ionisation

The sample 1s dissolved in a
matrix material and applied
to a metal surface.

matrix: aromatic acid

A pulsed laser irradiates the
sample, triggering ablation and
desorption of the sample and
matrix material.

The target molecules are
Tonized.
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M
AM

M is the molar mass of ion, AM is the smallest
detectable difference between two atomic mass

values.

resolution:

E.g., if the resolution is 500 than
molecules with 1000 and 1002 atomic mass values can be
separately detected, but the difference between 1000 and
1001 atomic mass values can not be seen.
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Mass spectrometer configurations

Typical mass analyzers

a) Single-focus mass spectrometer (res:~100-
1000)

b) Tandem mass spectrometry (res:~10000-
100000)

c) Quadropul mass analyzers (fast!, res:~1000)

d) Time-of-flight spectrometry

Detector: electron multiplier
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Applications of MS

312



a) Analytical tool

Molar mass

Quantitative analysis of gas mixes.

dentifying unknown compound

sotopic composition

Can be combined with
gaschromatograpy (GC-MS)
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b) Structure of molecules

Types of peaks:

Molecular peaks

Fragment peaks M*—A*+B
Multiply ch d K v
ultiply charged peaks % e

Metastabe peaks (short living ions)
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Thiophene

I—Illlﬂ—CH — CH=CH E:HE—}C!H+ 53
Hc_+ng
"
— 'H3 CH=CH"
f 39
i~ H
4*14+4*12+32=84
—{3H;3 Heoat 45
3
Relative
intensity
39 45 56 24 o ,f.;
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T—O—T %
T—O—T a
*
%
Ir—0O—I + —]
T—O—T S ]
H ——
l ] ] ] |
= = = i_ = =
= oo (L] =1 =]

n-butane

JouBpPUNQE JATJR[AI

Gl

a0

40

al

20

10

M.z
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n-butane

1) peak at m/e=58 has a relativelly small intensity

2) peak at m/e = 43 has the highest probability:
58-43 = 15, i.e., the CH, group has removed and the

C,H.* ion is detected

3) small peak at m/e = 59, it is caused by the '3C or °H
iIsotopes (satelite peaks)

4) C,H.*/ C,H,,** have the same m/e=29 value

5) m/e = 25.5, 2*25.5=51, doubly charged ion.

317



c) Application in physical chemistry

lonization potentials, molar heat of fragments,
dissociation energies, reaction kinetics

Intensity is measured as a function of the energy
of the bombarding electrons.
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X-ray diffraction

X-ray diffraction pattern
(reflections), protein sample
(crystal)[wikipedia]
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Molecular geometry

® Bound distancies, bound angles
® Conformation

® Configuration of chiral centers
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Methods for determining molecular
geometry

® Gas sample: microwave spectroscopy
rotational Raman-spectroscopy
® Solution: (NMR, conformation)
(CD-spectroscopy, chiral centrums)

® Crystals: X-ray diffraction
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Perfect crystals

322



Primitive cell

Parallelepiped Lattice parameters:
a, b, c : edges
/ | a, 3, y: angles.
£
/
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Crystal structures

triclinic
monoclinic

orthorombic

tetragonal
rhombohedral

hexagonal

cubic

Crystal structures

Num. of independent
parameters

6
4
3
2
2
2

1

Parameters

a#b #c,a # P #y

a#b #c,a=y=90"#p
a#b#c,a=pf=y=90
a=b#c,a=pf=y=90"
a=b=c,a=pf=y # 90
a=b#c,a=p=90",y=120°
a=b=c,a=p=y=90
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Position of an atom 1n the primitive cell

r =x a+y b+z c

NaCl crystal
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Crystal lattice

Lattice point: assigned to one or more atoms, molecules, or
ions.

Translation vectors which shift the lattice points to equivalent
lattice points:

t:n1a+n2b+n30

N
- -
a, b, ( :elementary translation vectors which keep the
lattice invariant.

n,, n,, n, : tegers
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The X-ray diffraction experiment

Aim of a X-ray diffraction measurment:
to obtain the crystal structures, 1.€, to access

- the parameters of the primitive cell

- the positions of atoms 1n the primitive cell
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The X-ray diffraction

On the crystal sample the X-ray radiation scatters ellastically. The
interference of scattered radiation can be detected.

(The wavelenght of the X-ray radiation 1s comperable to the lattice
parameters a, b, ¢ leading to interference picture.)

Most important methods:
- methods to obtain the lattice parameters:

® Debye-Scerrer method : monochromatic radiation scatters on
powder sample

* [aue method: polychromatic radiation scatters on powder
sample

- to have the lattice parameters and the atomic positions
* rotating crystal method: monochromatic radiation scatters on

crystals
328



The X-ray radiation scatters on the electrons.

Scattering on the nuclei 1s negligible.
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X-ray diffraction instrument for rotating crystal
experiments

detector

Eulerian cradle
high energy 0 \
electron beam X o o
° ® L
\ \X . . ° °
monochromator [ . ®

’\T _

€
41‘\
o

arget (Cu) X-ray radiation \ i
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Lattice parameters
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Reflection from two atomic crystal layers

BC=CD=dsin6
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Condition of constructive interference

BC+CD=2dsin 6=nA Bragg equatition
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Example: orthorombic crystal

d=a d
2asinf{=2
2asinf,=22 C

2asinf;=31
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Example: orthorombic crystal

Bragg equation

d=a d=b

d=c
2asinf=2 2bsinf)=A 2 csin 5=
2asinfi=2 2bsin ;=22 2 csin 65=2.2

2asin05=3 2bsinf; =31 2csin 85=3
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Example: orthorombic crystal

Lattice plain I.
(Miller 1ndices)
® 0 o o ¢ e o o o o o
¢ d ® d e—© e & 6 ©
b
d b O ) e & ® ®

(100) (010)
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Example: orthorombic crystal

Lattice plain II.
(Miller 1ndices)

ENRA

(110) (210)
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Example: orthorombic crystal

Distance of lattice plains

1 _h2+k2+£2
2 2 2 2

dhke a- b- c
2d,,,sin0=A

When not all the lattice angles are 90° than dhkl
depents on the lattice angles too.
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The lattice parameters can be
obtained from the directions of the
diffraction maxima (reflections).

At most 6 parameters: 6 reflections 1s enough to
determine the lattice parameters.
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Atomic positions
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The atomic positions can be obtained
from the relative intensities of
reflections.
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Intensities

1. Model: spherically symmetric atoms (effect of valence
electrons 1s neglected).
Steps of derivation:

1.a Scattering on an 1solated atom
1.b Scattering on primitive cell
1.c Scattering on 3D crystal

2. Model: distribution of electrons is not spherically symmetric
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Intensity of the scattering on a crystal of
spherically symmetric atoms

_ )
[=|Fyy
F,., 1s (hk?) scattering amplitude of the
plain, 1t 1s the so-called structure factor.

For a set of particle it 1s a sum of scattering amplitudes
times a phase factors: F=)_ f.exp(i¢.)

¢. quantities describe the phase differences due to the different
optical path lengths.
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Structure factor

Fi\ .= Z fnexp{Zin (th+ ky +0z_

Nn

X, V., Z are the atomic coordinates of the primitive cell

f is the scattering factors of the n™ atom.
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Atomic scattering factor

N f=] plrlexplig(r]/d <

40 - Spherically symmetric
35 - charge distribution 1s
\ supposed

a0
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f(9)=4n{ p(r)smk(fr) redr
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atomic scattering factors as functions of sin(@)/ A
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Scattering intensity of primitive cells
with contiguous electron density

)
I:‘Fhkl?‘

plx,y,z)exp [Zin 'hx+ky +£z )] dxdydz
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