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Introduction

Physical Chemistry

Physical Chemistry I - Equilibrium (phase equilibrium, chemical

equilibrium)

Physical Chemistry II - Change (reaction kinetics, transport,

electrochemistry)

Physical Chemistry III - Structure (molecular structure,

spectroscopy, materials science)
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Introduction
Curriculum

Introduction

The basics of quantum mechanics

The structure of the hydrogen atom

Structure of many-electron atoms

Optical spectroscopy

Rotational spectroscopy

Vibrational spectroscopy

Electronic structure of molecules
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Introduction
Curriculum

Photoelectron spectroscopy

Lasers and laser spectroscopy

Fundamentals of nuclear structure

Nuclear magnetic resonance

Mass spectrometry

X-ray diffraction
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Introduction to spectroscopy

The structure of atoms, molecules, and other particles is described

by quantum mechanics.

The foundation of quantum mechanics was laid in the 1920´s.

Preliminaries: some experiments which contradict the principles of

classical physics
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Introduction to spectroscopy
Joseph Fraunhofer’s experiment, 1815

The sunlight was dispersed by a grating.

Dark lines were observed in the continuous spectrum.
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Introduction to spectroscopy
The spectrum of the sun

7



Explanation:

the sun emits continuous radiation

the particles of the gas surrounding the Earth and the Sun

absorb only photons of particular wavelength/frequency

particle A absorbs light of νA1, νA2, ... frequency particle B

absorbs light of νB1, νB2, ... frequency, etc.

hence the energy of particle A can be changed by quanta of

∆EA = hνA1, hνA2, ... and the energy of particle B can be

changed by ∆EB = hνB1, hνB2, ...
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Oxazine 1
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Oxazine 1
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Some physical properties of submicroscopic particles are quantized,

that is, the corresponding physical quantities have only discrete

values.

This realization is reflected by the term quantum mechanics
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Schrödinger equation

In the non-relativistic case the submicroscopic systems can be

described by the Schrödinger equation

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r, t)

]
Ψ(r, t)

Let’s start from the beginning. What does i stand for?
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Basic concepts from mathematics
complex numbers a

aP. Atkins, J. Paula, R. Friedman, Chapter 2

Natural numbers

negative numbers (Diophantus [200 - c.284 CE]: The solution

of the 4 = 4x + 20 equation is absurd.)

rational numbers (Pythagorean school: all phenomena in the

universe can be reduced to whole numbers and their ratios)

but what is
√
2?

irrational numbers (Hippasus, 5th century BC) ...
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Basic concepts from mathematics
complex numbers

Real numbers form a closed set for the

a + b, a− b, a ∗ b, a/b (a, b ∈ R) operations.

But what is
√
−1? (Cardano, 1545)
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Basic concepts from mathematics
complex numbers

real line vs. complex plane

1D vs. 2D

(x) (x , y)

x , y ∈ R (ordered pairs) (x , y) 6= (y , x)
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Basic concepts from mathematics
complex numbers

addition, (a, b) + (c , d) , (a + c , b + d)

subtraction, (a, b)− (c , d) , (a− c , b − d)

multiplication, (a, b) · (c , d) , (ac − bd , ad + bc)

real numbers have the form of (a, 0) they lie on the real axis:

(a, 0) + (c , 0) , (a + c , 0)

(a, 0)− (c , 0) , (a− c , 0)

(a, 0) · (c , 0) , (ac , 0)
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Basic concepts from mathematics
complex numbers

imaginary numbers have the form of (0, b) they lie on the imaginary

axis:

z = (0, b)

z · z = z2

(0, b) · (0, b) , (−b2, 0)

z2 = −b2 z ∈ C , b ∈ R

(0, 1) · (0, 1) , (−1, 0)
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Basic concepts from mathematics
complex numbers

z = (0, 1) is special, it is denoted by i , and called the imaginary

unit (i2 = −1) with its help z = (a, b) = a + bi

complex conjugate of z = a + bi is denoted by a star superscript

z∗ = a− bi

z · z∗ = (a + bi) · (a− bi) = a2 + b2 = |z |2
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Basic concepts from mathematics
complex numbers

division by a complex number:

a + bi

c + di
=

a + bi

c + di
· c − di

c − di

=
(a + bi)(c − di)

c2 + d2

=
(ac + bd)

c2 + d2 +
(bc − ad)

c2 + d2 i
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Basic concepts from mathematics
complex numbers

polar form of complex numbers

z = a + bi = r · (cosϕ+ i sinϕ)

r =
√

a2 + b2 tanϕ =
b

a

multiplication and division in polar form:

z1 = r1(cosϕ1 + i sinϕ1) z2 = r2(cosϕ2 + i sinϕ2)

z1 · z2 = r1 · r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

z1
z2

=
r1
r2

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2))
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Basic concepts from mathematics
Exponential functions

2n = 2× 2× 2× · · · × 2

2n/m = m
√
2n

2−n/m =
1

2n/m

e = lim
n→∞

(1 +
1
n

)n = 1 +
1
1!

+
1
2!

+
1
3!

+ . . ., where

e = 2.71828182845904523536028747135266249775724709369995

Expression ’exponential function’ generally refers to ex

ex = lim
n→∞

(1 + x
n )n = 1 + x

1! + x2

2! + x3

3! + . . .
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Basic concepts from mathematics
Logarithm

Inverse of a function: g(x) = f −1(x) if g(f (x)) = x .

The logarithm is the inverse operation to exponentiation, e.g.,

2log2 x = x .

log2 8 = How many 2s do we multiply to get 8?

Plots of logarithm functions:

Properties of logarithm:

log of product loga(xy) = loga(x) + loga(y)

log of fraction loga(x/y) = loga(x)− loga(y)

log of exponential loga(xy ) = y loga(x)

change the base of log loga(x) = logb(x)
logb(a)
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Basic concepts from mathematics
Sigma and Pi notation

∑
compactly represents summation of many similar terms:

∑
i ai

Π is frequently used for product of terms: Πiai

Examples
n∑

i=1

ln(ai ) = ln(a1) + ln(a2) + · · ·+ ln(an)

= ln(a1a2 . . . an) = ln(
n∏

i=1

ai )

ex =
∞∑

n=0

xn

n!
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Basic concepts from mathematics
Derivation of single-variable functions

The derivative of a function of a real variable measures the

sensitivity to change of the function value (output value) with

respect to a change in its argument (input value).

f ′(x) = f (1)(x) =
df (x)

dx
= lim

h→0

f (x + h)− f (x)

h
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Basic concepts from mathematics
Derivation of single-variable functions

Derivatives of simple functions

f (x) f ′(x) f (x) f ′(x)

const 0 ln x 1/x

x2 2x sin x cos x
√
x 0.5x−0.5 cos x − sin x

xn nxn−1 ex ex

Derivation of combined functions

linearity (af (x) + bg(x))′ = af (x)′ + bg(x)′

product rule (f (x)g(x))′ = f (x)′g(x) + f (x)g(x)′

quotient rule
(

f (x)
g(x)

)′
= f (x)′g(x)−f (x)g(x)′

g(x)2

chain rule f (g(x))′ = df (g(x))
dg(x)

dg(x)
dx
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Basic concepts from mathematics
Second derivatives

At local minima and maxima of a function the slope is zero:

f ′(x0) = 0

If the second derivative, f ′′(x0) > 0, is positive at x0 it is a minima,

if f ′′(x0) < 0 it is a maxima. If f ′′(x0) = 0 the higher derivatives

should be investigated (e.g. f (x) = x4 at x = 0).
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Basic concepts from mathematics
Second derivatives

In general, if f ′′(x) > 0 the tangent ’below’ the function,

if f ′′(x) < 0 it is ’above’ the curve. If f ′′(x0) = 0 (and

f ′′′(x0) 6= 0), x0 can be

an inflection point (e.g. f (x) = x3 at x = 0).
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Basic concepts from mathematics
Taylor-series

Polynomial approximation of a function:

f (x) = f (x0) + 1
1! f

(1)(x0)(x − x0) + 1
2! f

(2)(x0)(x − x0)2 +

1
3! f

(3)(x0)(x − x0)3 + 1
4! f

(4)(x0)(x − x0)4+ . . . , where f (n)(x) = dnf
dxn .

Linear approximation: ∆f ≈ df
dx |x=x0∆x

(∆x = (x − x0) and ∆f = f (x)− f (x0)).

If ∆x is infinitesimal, then ∆x2 is considered to be zero, and

df = df
dx dx . It is the differential of f (x).

Taylor-series: f (x) =
∞∑

n=0

1
n!
f (n)(x0)(x − x0)n
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Basic concepts from mathematics
Partial derivative

z = f = f (x , y) defines a surface.

∂f (x,y)
∂x , ∂f (x,y)

∂y : the task is to find

the slope of a two-variable (or

multi-variable) function in the

directions of x and y .

Definition:
∂f

∂x

∣∣∣∣
y

= lim
h→0

f (x + h, y)− f (x , y)

h
,

∂f

∂y

∣∣∣∣
x

= lim
h→0

f (x , y + h)− f (x , y)

h

For continuous, well-behaving functions:
∂

∂y

∂f

∂x
=

∂

∂x

∂f

∂y
(Young-theorem)
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Basic concepts from mathematics
Exact differential

Linear approximation of a function of two variables:

∆f ≈ ∂f
∂x

∣∣
x ,y=x0,y0

∆x + ∂f
∂y

∣∣∣
x ,y=x0,y0

∆y .

The higher order terms contain contributions proportional to

∆x2, ∆y2, ∆x∆y , ∆x∆y2 etc.

If ∆x and ∆y are infinitesimal, then df = ∂f
∂x

∣∣
y
dx + ∂f

∂y

∣∣∣
x
dy .

It is called the exact differential of f (x , y).
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Basic concepts from mathematics
Indefinite integral

Reverse of differentiation: if dF (x)
dx = f (x) then∫

f (x)dx = F (x) + C , where F (x) is the indefinite integral of f (x)

and C is an arbitrary constant.

Indefinite integral of elementary functions:

f (x)
∫
f (x) f (x)

∫
f (x)

xn xn+1

n+1
1
x ln|x |

x x2/2 cos x sin x

eax 1
a e

ax sin x − cos x

ln(x) x(ln(x)− 1) c cx

Notation:
∫
dx =

∫
1dx
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Basic concepts from mathematics
Definite integral

The signed area below (plus sign) or above (minus sign) the graph

of function f in the interval bounded by a and b:
∫ b

a f (x)dx .

Newton-Leibnitz formula:
∫ b

a f (x)dx = [F (x)]ba = F (b)− F (a),

where F (x) is the indefinite integral of f (x).

To understand the N-L formula consider a short interval with

length h: hf (a) ≈
∫ a+h

a f (x)dx = F (a + h)− F (a). If h goes

to zero f (a) = dF
dx |x=a.
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Basic concepts from mathematics
Taylor-series

if f (x) is infinitely differentiable at a real or complex number a then

f (x) = f (a) + f ′(a)(x − a) +
1
2
f ′′(a)(x − a)2 +

1
3 · 2

f ′′′(a)(x − a)3 + . . .

=
∞∑

n=0

f (n)(a)

n!
(x − a)n

when a = 0 it is called a Mclaurin series
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Basic concepts from mathematics
Taylor-series, a = 0

f (x) = exp(x) = ex

ex = e0 + (e0)′(x − 0) +
1
2

(e0)′′(x − 0)2 +
1

3 · 2
(e0)′′′(x − 0)3 + . . .

=
∞∑

n=0

1
n!
xn
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Basic concepts from mathematics
Taylor-series, a = 0

f (x) = sin(x)

sin x = 0 + x + 0− 1
3!
x3 + 0 +

1
5!
x5 + 0− 1

7!
x7 + . . .

=
∞∑

n=0

−1n

(2n + 1)!
x2n+1
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Basic concepts from mathematics
Taylor-series, a = 0

f (x) = cos(x)

cos x = 1 + 0− 1
2!
x2 + 0 +

1
4!
x4 + 0− 1

6!
x6 + . . .

=
∞∑

n=0

−1n

(2n)!
x2n
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Basic concepts from mathematics
Euler’s formula

i0 = 1 i1 = i

i2 = −1 i3 = −i

recall that ez = 1 + z + 1
2z

2 + 1
3!z

3 + . . .

if z = ix

e ix = 1 + ix +
1
2
i2x2 +

1
3!
i3x3 +

1
4!
i4x4 +

1
5!
i5x5 + . . .
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Basic concepts from mathematics
Euler’s formula

e ix = 1 + ix +
1
2
i2x2 +

1
3!
i3x3 +

1
4!
i4x4 +

1
5!
i5x5 + . . .

= 1 + ix − 1
2
x2 − i

1
3!
x3 +

1
4!
x4 + i

1
5!
x5 + . . .

= 1− 1
2
x2 +

1
4!
x4 + ix − i

1
3!
x3 + i

1
5!
x5 + . . .

= (1− 1
2
x2 +

1
4!
x4 − . . . ) + i(x − 1

3!
x3 +

1
5!
x5 − . . . )

= cos x + i sin x
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Basic concepts from mathematics
complex numbers

exponential form of complex numbers

z = a + bi = r · (cosϕ+ i sinϕ) polar form

e iϕ = cosϕ+ i sinϕ

z = r · e iϕ exponential form
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Basic concepts from mathematics
vectors, Euclidean space, complex vector space

a = ax i + ay j + azk

a =


ax

ay

az


sum of two vectors (parallelogram law):

a + b = (ax + bx )i + (ay + by )j + (az + bz )k

scalar (dot) product of two vectors:

ab = ab · cos(φ) =
∑

i=x ,y ,z
aibi

dot product of two complex n dimensional vectors:

ab =
n∑

i=1
a∗i bi 41



Basic concepts from mathematics
vectors

bracket notation: |b〉 =


b1

b2

. . .

bn


〈a| =

(
a∗1 a∗2 . . . a∗n

)

〈a|b〉 =
(
a∗1 a∗2 . . . a∗n

)

b1

b2
...

bn

 =
n∑

i=1
a∗i bi
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Basic concepts from mathematics
vector (cross) product

(a× b)x = aybz − azby

(a× b)y = azbx − axbz

(a× b)z = axby − aybx

||a× b|| = ab · sinΘ

a× b is orthogonal to vectors a and b (right hand rule)
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Basic concepts from classical mechanics
Newton’s laws, conservation of linear momentum

Every object in a state of uniform motion will remain in that

state of motion unless an external force acts on it.

F = ma

For every action there is an equal and opposite reaction.

If there is no force, F = 0, then ma = ṗ = 0, i.e., p is

constant.
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Basic concepts from classical mechanics
Newton’s laws, equation of motion

Equations of motion are obtained from Newton’s second law:

F(r, ṙ, t) = ma = ṗ = mr̈

with the initial conditions:

r(t = tA) = rA, v(t = tA) = ṙ(t = tA) = vA

Coulomb force: F = K q1q2
r312

r12

spring force: F = −kr
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Basic concepts from classical mechanics
Newton’s laws, kinetic and potential energies

Work: δW = Fdr

W =

∫
δW =

rB∫
rA

Fdr (line integral of a vector field)

=
tB∫
tA

Fṙdt =
tB∫
tA

mr̈ṙdt = 1
2

tB∫
tA

m
d(ṙ2)

dt dt = 1
2mv2B −

1
2mv2A

Potential of a conservative force:

F = −grad(V (r)) = −∇V (r)
nabla: ∇Φ =


∂Φ
∂x

∂Φ
∂y

∂Φ
∂z


Example for non-conservative force: Fdrag ∼ v2
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Basic concepts from classical mechanics
Kinetic and potential energies

Work of a conservative force:

W =

rB∫
rA

Fdr = −
rB∫

rA

grad(V )dr =

−
∫
∂V
∂x dx + ∂V

∂y dy + ∂V
∂z dz = −

rB∫
rA

dV = V (rA)− V (rB)

Conservation of energy:

E = 1
2mv2B + V (rB) = 1

2mv2A + V (rA)
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Basic concepts from classical mechanics
Energy, the ability to do work

the kinetic energy (Ekin | K ) is due to motion; Ekin = f (p)

a moving object can do work

the potential energy (Epot | V ) is due to position; Epot = g(r)

stored energy of an object that can do work

Etot = Ekin + Epot or H = K + V

Hamilton function: E=H=H(p, q), where p,q are the

canonical coordinates.
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Basic concepts from classical mechanics
Kinetic energy

recall the scalar product of vectors: v · v = |v|2 = v2

Ekin =
1
2
mv2

p = mv

p2 = m2v2

Ekin =
p2

2m
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Basic concepts from classical mechanics
Newton’s laws, simple classical systems, Epot = 0

Etot = Ekin =
p2

2m√
2mEkin = p = m

dx

dt

dx

dt
=

√
2Ekin

m∫ x(t)

x(0)
dx =

√
2Ekin

m

∫ t

0
dt

x(t) = x(0) +

√
2Ekin

m
t

p(t) = mv(t) = m
dx

dt
= m

√
2Ekin

m

p(t) =
√

2mEkin
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Basic concepts from classical mechanics
Newton’s laws, simple classical systems, harmonic oscillator

Restoring force is proportional to the displacement from the

equilibrium position.

The spring stores the energy as V (x) =
1
2
kx2 ⇒ Fx = −dV

dx

F = −kx

m
d2x

dt2
= −kx

mλ2eλt = −keλt

(mλ2 + k)eλt = 0

λ2 = − k

m

λ = ±i
√

k

m
= ±iω

x(t) = c1e
iωt + c2e

−iωt = A sin(ωt + ϕ)

p(t) = m
dx

dt
= ωAm cos(ωt + ϕ)

x(t) = eλt ⇒ dx

dt
= λeλt ⇒ d2x

dt2
= λ2eλt
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Basic concepts from classical mechanics
Angular momentum

angular momentum: L = r × p

time derivative of angular momentum:

L̇ = ṙ × p + r × ṗ = r × F = M

conservation of angular momentum: if the moment of force

(torque), M is zero then L̇ = 0 and L is a constant vector.
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Basic concepts from classical mechanics
Uniform circular motion, centripetal force, Fcp, and angular momentum, `

∆s

∆ϕ
=

arc

angle
=

2πr

2π
⇒ ∆s = r ·∆ϕ

v =
ds

dt
= lim

∆t→0

∆s

∆t
= r · lim

∆t→0

∆ϕ

∆t

= r · ω

⇒ ∆v = v ·∆ϕ

a =
dv

dt
= lim

∆t→0

∆v

∆t
= v · lim

∆t→0

∆ϕ

∆t

= v · ω = r · ω2

Fcp = m · a = m · rω2 = m ·
v2

r

L = r · p = r ·mv = mr2ω = Iω

where I is the moment of inertia

Ekin = 1
2mv2 = 1

2m(rω)2 = 1
2mr2

(mr2ω)2 = L2

2mr2
= L2

2I
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Basic concepts from classical mechanics
Circular motion, special case of rotational motion, r is fixed

x(t) = A sin(
2π
T

t) = A sin(ωt)

v = rω

a = vω = rω2

F =
mv2

r
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Linear and angular motions
correspondences

linear momentum p angular momentum L = r × p = Iω

velocity v angular velocity ω =
r × v
r2

mass m moment of inertia I = mr2

Kinetic energy
p2

2m
L2

2I
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Basic concepts from classical mechanics
Conserved properties

conservation lawsa

some measurable physical properties do not change

mass (m) b and energy (E )

electric charge (q)

linear momentum (p)

angular momentum (L)
aThere is always a symmetry behind the conservation laws: conservation of

energy is connected to the time-invariance of physical systems.
bconservation of mass is not exact: nuclear fusions
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Classical wave equation
modela

asee also in Wikipedia, Wave equation, Hooke’s law

elastic, homogeneous string stretched to a length of L

endpoints are fixed

ρ is the mass of the string per unit length

u(x , t) represents the displacement of the string at a point x

at a time t from its equilibrium position

only vertical movements are allowed (transverse wave,

longitudinal waves are not considered...)
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Classical wave equation
derivation

Fy = F2y − F1y = k`2︸︷︷︸
T2

sin(α + ∆α)− k`1︸︷︷︸
T1

sin(α)

no longitudinal contribution:

Fx = F2x − F1x = 0,T2cos(α + ∆α) = T1cos(α) = k` = T

at the end ∆α, `→ 0
58



Classical wave equation
derivation

T1 · cosα = T2 · cos(α + ∆α) := T

T2 · sin(α + ∆α)− T1 · sinα = m · a = ρ∆x · ∂
2u(x , t)

∂t2

T2 · sin(α + ∆α)

T2 · cos(α + ∆α)
− T1 · sinα

T1 · cosα
=

1
T
ρ ·∆x · ∂

2u(x , t)

∂t2

tan(α + ∆α)− tanα =
1
T
ρ ·∆x · ∂

2u(x , t)

∂t2

∂ux+∆x

∂x
− ∂ux

∂x
=

1
T
ρ ·∆x · ∂

2u(x , t)

∂t2
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Classical wave equation
derivation

∂ux+∆x

∂x
− ∂ux

∂x
=

1
T
ρ ·∆x · ∂

2u(x , t)

∂t2
∂ux+∆x

∂x − ∂ux
∂x

∆x
=

1
T
ρ · ∂

2u(x , t)

∂t2

∂2u(x , t)

∂x2
=

1
T/ρ

· ∂
2u(x , t)

∂t2

∂2u(x , t)

∂x2
=

1
c2
· ∂

2u(x , t)

∂t2
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Classical wave equation
Solutions of the wave equation

u(x , t) = C · e i(kx−ωt+φ)

∂2u(x ,t)
∂x2

= −k2u(x , t), 1
c2
∂2u(x ,t)
∂t2

= −ω2

c2
u(x , t)

=⇒ k = ω
c

real solutions: u(x , t) = A · sin(kx − ωt + φ) and

u(x , t) = B · cos(kx − ωt + φ)

periodic solutions in time and space: x =⇒ x + 2π
k and

t =⇒ t + 2π
ω transformations do not change these functions,

k = 2π
λ (wavenumber), ω = 2π

T (angular velocity)
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Classical wave equation
traveling, interference, and standing waves

Ψ(x , t) = A · sin(kx − ωt) =⇒

Ψ(x+∆x , t+∆t) = A·sin(k(x+∆x)−ω(t+∆t))

= A · sin(kx − ωt) = Ψ(x , t) =⇒

k∆x − ω∆t = 0, vwave =
ω

k
= c

sinα+ sinβ= 2 sin(
α+ β

2
) cos(

α− β
2

)

Ψ(x , t)interference = A · sin(kx − ωt) + A · sin(kx − ωt + ϕ) = 2A · sin(kx − ωt +
ϕ

2
) cos(

ϕ

2
)

constructive (ϕ = 0, 2π, 4π, . . . ) and destructive (ϕ = π, 3π, 5π . . . ) interference

Ψ(x , t)standing = A · sin(kx − ωt) + A · sin(kx + ωt) = 2A · sin(kx) cos(ωt)

Ψ(x , t)standing = A · sin(kx − ωt)− A · sin(kx + ωt) = 2A · cos(kx) sin(ωt)
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Classical wave equation
traveling, interference, and standing waves
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Classical wave equation
back to the elastic string ..., discrete Fourier series

Boundary conditions: u(−a, 0) = 0, u(a, 0) = 0

u2n(x , t) = 1√
a
sin(k2nx)cos(ω2nt)

=⇒ k2n = 2nπ
2a , ω2n = k2n ∗ c , n = 1, 2, ...

u2n+1(x , t) = 1√
a
cos(k2n+1x)cos(ω2n+1t)

=⇒ k2n+1 = (2n+1)π
2a , n = 0, 1, 2, ...

u(x , t) =
∑
n=1

cnun(x , t) (general form of standing waves)

how to get the cn coefficients?
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Classical wave equation
back to the elastic string ..., discrete Fourier series

The un(x , t = 0) functions are "ortogonal to each other":
a∫
−a

un(x , 0)um(x , 0)dx = δnm,

where δnm =

1, if n = m

0, if n 6= m
is the so-called Kronecker delta.

Any functions with the given boundary conditions can be

represented as a linear combination of the above sin and cos

funtions.
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Classical wave equation
back to the elastic string ..., discrete Fourier series

u(x , 0) =
∑
n=1

c2n
1√
a
sin(k2nx) +

∑
n=1

c2n+1
1√
a
cos(k2n+1x)

From the initial conditions:

cn =
a∫
−a

u(x , 0)un(x , 0) =
∑
m

cm

a∫
−a

um(x , 0)un(x , 0)dx

The u(x , t = 0) function is given in the Fourier series form.

Form of the final solution:

u(x , t) =∑
n=1

c2n
1√
a
sin(k2nx)cos(ω2nt)+

∑
n=1

c2n+1
1√
a
cos(k2n+1x)cos(ω2n+1t)
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Classical wave equation
light

light is electromagnetic radiation: Ψ(x , t) = A · sin(kx − ωt) = A · sin( 2π
λ

(x − ct))

amplitude, A, maximum displacement from the rest position

wavelength, λ, the distance between two successive maxima
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Black-body radiation (Planck, 1900)

Insulated cave with a small hole: allows the

study of the TD equilibrium of the EM

radiation with matter.

The u(ν,T )dν is the density of energy

stored in the dν frequency interval. For the

black-body radiation it does not depend on

the quality of material.

Model: EM field consists of standing waves,

nλ/2 = L, n = 1, 2, 3, . . . ED =⇒ number

of nodes in the dν interval: V ( 8π
c3

)ν2dν

Classical theory: Equipartition theorem =⇒ each nodes has kB T energy, i.e.,

Vu(ν,T )dν = V ( 8π
c3

)kBν
2Tdν =⇒ ultraviolet catastrophe

Wien’s displacement law: λmax = B/T , where B is a constant

Planck: Energy of EM radiation is quantized: Eν = n · hν, h = 6.626070040(81)× 10−34J s

(Planck constatant)

=⇒ u(ν,T ) = ( 8π
c3

) hν3

e

hν
kB T −1

, if kB T � hν, then no EM waves with frequency ν.
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Photoelectric effect (Einstein, 1905)

Diagram of the maximum kinetic energy as

a function of the frequency of light on zinc.

Emission of electrons due to EM radiation.

Classically: E
kin.of e− ∼ Eradiation

Experiment: 1. increasing intensity does not increase the Ekin of electrons.

2. below a certain frequency there are no emitted electrons.

Einstein: EM radiation is a collection of photons with n × hν energies.
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Heat capacity of low temperature insulator crystals (Debye,

1912)

At low temperature the vibration of atomic lattice has the

most significant contribution to the heat capacity of insulator

crystals.

Debye: the energy of the vibration modes are quantized:

Ephonon = n · hν

Phonones with hν � kB T are not excited =⇒ C ∼ T3

de Broglie (1924): all matter has wave properties, p = h
λ = ~k
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Energy levels of atoms and molecules
H emission spectrum

the experimental emission spectrum of the H-atom
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Energy levels of atoms and molecules
H emission spectrum a

awikipedia, Hydrogen spectral series

Balmer(n ≥ 3)[1885]

ν̃ = 109680
(
1
4
−

1
n2

)
cm−1

Rydberg(n2 > n1)[1888]

ν̃ = 109680
(

1
n21
−

1
n22

)
cm−1

Lyman[1906− 1914]

Ritz combination rule: spectral lines include frequencies that are either the sum

or the difference of the frequencies of two other lines [ ⇐= the wavenumber (

ν̃ = 1/λ) of any spectral line is the difference of two terms

ν̃ = term(i)− term(j) ]
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Energy levels of atoms and molecules
atomic emission spectra, characteristic for the atoms
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Energy levels of atoms and molecules
Bohr’s theory of the H-atom (1913) a

awikipedia

existence of stationary orbits (fixed nucleus and circular orbit), no

electromagnetic radiation

frequency condition: ∆E = hν (h is the Planck constant, 6.626 · 10−34J · s)

angular momentum is quantized: ` = n~, ~ = h/2π, where n = 1, 2, 3, . . .
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Energy levels of atoms and molecules
plausibility of Bohr’s quantization condition, ` = n~

pphoton =
h

λ
(Einstein)

pparticle =
h

λ
(de Broglie)

λ =
h

pparticle

2rπ = n · λ

2rπ = n ·
h

pelectron

` = r · p = n ·
h

2π

constructive and destructive interference

standing wave - stationary orbit
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Energy levels of atoms and molecules
Bohr’s theory of the H-atom (1913)

Felectrostatic = Fcentripetal

e2

4πε0r2 =
mev

2

r
/in SI units/

` = n~ = r ·mev

v =
n~

r ·me

v2 =
n2~2

m2
e r

2

e2

4πε0r2 =
me

n2~2

m2
e r2

r

r =
n2~24πε0
mee2

Bohr radius, a0 = 0.529 Å, (n = 1)

vacuum permittivity ε0 = 8.854187817620...× 10−12A2s4kg−1m−3

electron mass me = 9.10938356× 10−31 kg
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Energy levels of atoms and molecules
Bohr’s theory of the H-atom

Etot = Ekin + Epot

=
1
2
mev

2 − e2

4πε0r

=
1
2

e2

4πε0r
− e2

4πε0r
= −1

2
e2

4πε0r

= −1
2

e2

4πε0 n2~24πε0
me e2

= −mee
4

8ε0h2
1
n2

e2

4πε0r2 =
mev

2

r

mev
2 =

re2

4πε0r2

r =
n2~24πε0
mee2

~2 =
h2

4π2
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Energy levels of atoms and molecules
Bohr’s theory of the H-atom

∆E = hν = h
c

λ
= hc ν̃

∆E = En2 − En1 =
mee

4

8ε0h2
(
1
n21
− 1

n22
)

ν̃ =
1
hc

mee
4

8ε0h2
(
1
n21
− 1

n22
)

ν̃ = RH (
1
n21
− 1

n22
)

RH =
1
hc

mee
4

8ε0h2
= 109737cm−1

RH = 109638cm−1from experiment
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Energy levels of atoms and molecules
Bohr’s theory of the H-atom

Bohr(n2 > n1) : ν̃ = 1
hc

me e4

8ε0h2 ( 1
n2
1
− 1

n2
2

)cm−1

Lyman(n1 = 1)

Balmer(n1 = 2)

Paschen(n1 = 3)

Brackett(n1 = 4)

1
1On December 1, 2011, it was announced that Voyager 1 detected the first Lyman-alpha radiation

originating from the Milky Way galaxy. Lyman-alpha radiation had previously been detected from other

galaxies, but due to interference from the Sun, the radiation from the Milky Way was not detectable.

(Wikipedia)
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Energy levels of atoms and molecules
plausibility of Bohr’s quantization condition, ` = n~

Wave-particle duality: "It seems as though we must use sometimes the

one theory and sometimes the other, while at times we may use either.

We are faced with a new kind of difficulty. We have two contradictory

pictures of reality; separately neither of them fully explains the

phenomena of light, but together they do." (Einstein)

c = λ · ν E = h · ν
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Time-dependent Schrödinger equation
some arguments for the Schrödinger equation

of course there is no proof of it, it is a postulate

Free particle waves: Ψ(x , t) = e i(kx−ωt)

ω = E/~ (Planck)

∂

∂t
Ψ(x , t) = − i

~
EΨ(x , t)

i~
∂

∂t
Ψ(x , t) = EΨ(x , t)

k = p/~ (De Broglie)

∂2

∂x2
Ψ(x , t) = (

i

~
)2p2Ψ(x , t)

− ~2

2m
∂2

∂x2
Ψ(x , t) =

p2

2m
Ψ(x , t)

The energy is a classical free particle:

E =
p2

2m

i~
∂

∂t
Ψ(x , t) = − ~2

2m
∂2

∂x2
Ψ(x , t)
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Schrödinger equation
particle in a force field, time-independent Schrödinger equation

If the particle is not free (3D):

i~
∂

∂t
Ψ(r, t) =

{
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (r)

}
Ψ(r, t)

A particular solution of the time-dependent Schrödinger equation:

Ψ(r, t) = Φ(r)e−
i
~Et

i~
∂

∂t
Φ(r)e−

i
~Et = EΦ(r)e−

i
~Et

Using the relations above we obtain the time-independent

Schrödinger equation{
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (r)

}
Φ(r) = EΦ(r)

82



Energy levels of atoms and molecules
Schrödinger equation for the particle in the 1D box model a

aAtkins, part II, chapter 8

− ~2

2m
d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x)

Ekin + Epot = Etot

∂2Ψ(x)

∂x2
=
−2m(E − V (x))

~2
Ψ(x)

d2y

dx2
= −k2 · y

y ∈ {e ikx , sin(kx), cos(kx)}

83



Energy levels of atoms and molecules
Schrödinger equation for the particle in the 1D box model

− ~2

2m
d2Ψ(x)

dx2 + V (x)Ψ(x) = EΨ(x)

No particle in the infinit potential area! Ψ(x) = 0 if x < 0 or x > L.

∂2Ψ(x)

∂x2
=
−2mE

~2
Ψ(x)

k =

√
2mE

~2

Ψ(x) = C cos kx + D sin kx

Ψ(0) = 0

Ψ(L) = 0

}
⇐⇒

{
C = 0

D = 0 or sin kL = 0

kL = nπ n = (1, 2, · · · )

Ψ(x) = D sin
nπ

L
x
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 1D box model

V (x) =


∞,−∞ < x≤ 0

0, 0 < x< L

∞, L ≤ x<∞

k =

√
2mE

~2
=

nπ

L

k2 =
2mE

~2
=

n2π2

L2

2mE

~2
=

n2π2

L2

En =
n2h2

8mL2

Born probability interpretation:
∫∞
−∞Ψ2(x)dx = 1
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Energy levels of atoms and molecules
properties of the solutions

Born probability interpretation: probability of

finding the particle between x and x + dx is

Ψ2(x)dx, i.e., ∫∞−∞ Ψ2(x)dx=1

if n ↑ then E ↑

n = 1, zero-point energy

Ψ has n − 1 nodes in the 0 < x < L interval

ground and excited states

with increasing mass the energy gap between

the levels, En+1 − En, decreases

ρ(r) = Ψ∗(r)Ψ(r) satisfies the continuity equation, ∂ρ
∂t

+ div j = 0, where

j(r, t) = ~
2mi

[
Ψ∗ (∇Ψ)− Ψ

(
∇Ψ∗

)]
is the probability current .
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 1D box model

Born probability interpretation∫ ∞
−∞

Ψ2(x)dx = 1⇒ Ψ(x) =

√
2
L

sin(
nπ

L
x)

Ψ(x) = D sin(
nπ

L
x)

D2
∫ ∞
−∞

sin2(
nπ

L
x)dx = D2

∫ L

0
sin2(

nπ

L
x)dx = 1

D =

√
2
L

Ψ(x) =

√
2
L

sin(
nπ

L
x)

z =
nπ

L
x

dx =
L

nπ
dz∫ L

0
sin(

nπ

L
x)dx =

L

nπ

∫ nπ

0
sin(z)dz

sin2 z =
sin2 z + cos2 z + sin2 z − cos2 z

2

=
1− cos 2z

2
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Energy levels of atoms and molecules
Schrödinger equation for the free particle, V (x) = 0, Ekin = Etot

− ~2

2m
d2Ψ(x)

dx2
= EkinΨ(x)

∂2Ψ(x)

∂x2
=
−2mEkin

~2
Ψ(x)

k2 =
2mEkin

~2

Ψ(x) = A · sin(kx)

Ψ(x) = A · sin(
2π
λ

x)

k =
2π
λ

2mEkin = 2m · 1
2
mv2 = p2

p2 = k2~2 =

(
2π
λ

)2

·
(

h

2π

)2

λ =
h

p
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 2D box model

− ~2

2m

{
∂2Ψ

∂x2
+
∂2Ψ

∂y2

}
+ VΨ = EΨ

V (x , y) =

{
0, x ∈ (0, L1) ∧ y ∈ (0, L2)

∞, otherwise
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 2D box model

− ~2

2m

{
∂2Ψ

∂x2
+
∂2Ψ

∂y2

}
= EΨ Ψ(x , y) = F (x) · G(y)

separation of variables

Ψ = F (x) · G(y)

∂2Ψ

∂x2
= G(y)

d2F (x)

dx2

∂2Ψ

∂y2
= F (x)

d2G(y)

dy2

−
~2

2m

{
G(y)

d2F (x)

dx2
+ F (x)

d2G(y)

dy2

}
= EF (x)G(y)

−
~2

2m

{
1

F (x)

d2F (x)

dx2
+

1

G(y)

d2G(y)

dy2

}
= E

−
~2

2m

1

F (x)

d2F (x)

dx2
= Ex

−
~2

2m

1

G(y)

d2G(y)

dy2
= Ey

−
~2

2m

d2F (x)

dx2
= Ex F (x)

−
~2

2m

d2G(y)

dy2
= Ey G(y)
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 2D box model

−
~2

2m

d2F (x)

dx2
= Ex F (x)

Ex =
n2
1h2

8mL2
1

F (x) =

√
2

L1
sin

n1π

L1
x

−
~2

2m

d2G(y)

dy2
= Ey G(y)

Ey =
n2
2h2

8mL2
2

G(y) =

√
2

L2
sin

n2π

L2
y

Ψ(x , y) = F (x) · G(y) =

√
4

L1L2
· sin

n1π

L1
x · sin

n2π

L2
y

E = Ex + Ey =

{(
n1
L1

)2

+

(
n2
L2

)2
}

h2

8m
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 2D box model

Ψ(x, y) =

√
4

L1L2
· sin

n1π

L1
x · sin

n2π

L2
y

E(n1, n2) =

{(
n1

L1

)2
+

(
n2

L2

)2} h2

8m

consequence of symmetry, L1 = L2 = L

Ψ(x , y) =

√
4

L2
· sin

n1π

L
x · sin

n2π

L
y

E(n1, n2) =
(
n21 + n22

) h2

8mL2

E(1, 2) = E(2, 1) but the wavefunctions are different

degeneracy: same energies different wavefunctions
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 2D box model

degeneracy is the consequence of symmetry
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 3D box model

− ~2

2m

{
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

}
= EΨ Ψ(x , y , z) = F (x) · G(y) · H(z)

Ψ(x , y , z) = F (x) · G(y) · H(z) =

√
8

L1L2L3
· sin

n1π

L1
x · sin

n2π

L2
y · sin

n3π

L3
z

E = Ex + Ey + Ez =

{(
n1
L1

)2

+

(
n2
L2

)2

+

(
n3
L3

)2
}

h2

8m
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Energy levels of atoms and molecules
Schrödinger equation for the particle in the 3D box model

degenerate case: cube L1 = L2 = L3 = L

Ψ(x , y , z) =

√
8
L3
· sin

n1π

L
x · sin

n2π

L
y · sin

n3π

L
z

E(n1, n2, n3) =
(
n21 + n22 + n23

) h2

8mL2
=
(
n21 + n22 + n23

) h2

8mV 2/3
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Postulates of Quantum Mechanics a

postulate I

aP. Atkins, J. Paula, R. Friedman, Chapter 1

The state of a quantum-mechanical system is completely specified

by the so-called wavefunction, Ψ(r, t), that depends on the

coordinates of the particles and on time. Ψ∗(r, t)Ψ(r, t)dxdydz is

the probability that the particle lies in the volume element

dτ = dxdydz located at r at time t.
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Postulates of Quantum Mechanics
postulate I

properties of Ψ(r, t)

continuous

contiguously differentiable (if the V (r) potential is realistic ...)

finite (square integrable for bound states, i.e.,

〈Ψ|Ψ〉 =
∫∞
−∞ |Ψ|

2dτ <∞)
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Postulates of Quantum Mechanics
postulate II

To every observable in classical mechanics there exists a

corresponding linear, Hermitian operator in quantum mechanics.
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Operators in Quantum Mechanics
correspondences

observables Ω̂ operators

position
x x̂ multiplication by x

r r̂ multiplication by r

potential energy
V (x) V̂ (x̂) multiplication by V (x)

V (r) V̂ (̂r) multiplication by V (r)

momentum
px p̂x −i~ ∂

∂x

p p̂ −i~(ex
∂
∂x

+ ey
∂
∂y

+ ez
∂
∂z

)

kinetic energy
Kx K̂x − ~2

2m
∂2

∂x2

K K̂ − ~2

2m
( ∂

2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )

total energy E Ĥ T̂ + V̂
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Postulates of Quantum Mechanics
Bra–ket notation

Dot product of two wavefunction: 〈η|ψ〉 =
∫
η∗ψdτ

For systems with more than one particle: η = η(r1, r2, . . . ),

ψ = ψ(r1, r2, . . . ), and dτ = dx1dy1dz1dx2dy2dz2 . . .

=⇒ 〈η|ψ〉 = 〈ψ|η〉∗

Operator Â transforms ket function |ψ〉 to function |η〉:

|η〉 = Â|ψ〉

Matrix element of operator Â: 〈η|Â|ψ〉 =
∫
η∗Âψdτ = 〈η|Âψ〉

=⇒ 〈Âη|ψ〉 = 〈ψ|Âη〉∗ =
∫ (

Âη
)∗
ψdτ

An operator is called Hermitian if 〈ψi |Ω̂|ψj〉 = 〈Ω̂ψi |ψj〉.
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Postulates of Quantum Mechanics
postulate III

In any measurement of the observable associated with the operator

Ω̂, the only values that will ever be observed are the eigenvalues ωi

which satisfy the eigenvalue equation Ω̂|Ψi 〉 = ωi |Ψi 〉
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Operators in Quantum Mechanics
linear Hermitian operators{

− ~2

2m
∂2

∂x2
+ V

}
Ψ(x) = EΨ(x) ĤΨ(x) = EΨ(x)

eigenvalue equation Ω̂|ψi 〉 = ωi |ψi 〉, i = 1, 2, 3, . . .

If ψi 6= ψj but ωi = ωj , then this eigenvalue is degenerate.

An operator is called linear if Ω̂(|αψ〉+ β|φ〉) = αΩ̂|ψ〉+ βΩ̂|φ〉.

Ω̂ is Hermitian, i.e., 〈ψi |Ω̂|ψj〉 =
∫
ψ∗i Ω̂ψjdτ and

〈Ω̂ψi |ψj〉 =
∫ (

Ω̂ψi

)∗
ψjdτ

All eigenvalues of a Hermitian operator are real!!!

102



Postulates of Quantum Mechanics
postulate IV

If the state of the system is described by a normalized wavefunction

Ψ, then the average value of the observable corresponding to the

operator Ω̂ can be calculated as 〈ω〉 = 〈Ψ|Ω̂|Ψ〉

Expectation value of operator Â: 〈ψ|Â|ψ〉
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Postulates of Quantum Mechanics
postulate V

The wavefunction of a system evolves in time according to the

time-dependent Schrödinger equation: ĤΨ(r, t) = i~∂Ψ(r,t)
∂t
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Operators
required properties: measurable physical quantities are real

postulate III: Ω̂|Ψi 〉 = ωi |Ψi 〉 ⇒ 〈Ψi |Ω̂|Ψi 〉 = ωi

(we assumed that Ψi is normalized, 〈Ψi |Ψi 〉 = 1)

eigenvalue equation

Ω̂Ψ = ωΨ

〈Ψ|Ω̂|Ψ〉 = ω〈Ψ|Ψ〉

〈Ψ|Ω̂|Ψ〉 = ω

its complex conjugate

〈Ψ|Ω̂|Ψ〉∗ = ω∗

〈Ω̂Ψ|Ψ〉 = ω∗

=⇒︸︷︷︸
Ω̂ is hermitian!

〈Ψ|Ω̂|Ψ〉 = ω∗

ω is real if ω = ω∗.
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Operators
the hamiltonian, Ĥ = K̂ + V̂ , is a Hermitian operator

observables operators

position
x x̂ multiplication by x

r r̂ multiplication by r

potential energy
V (x) V̂ (x̂) multiplication by V (x)

V (r) V̂ (̂r) multiplication by V (r)

momentum
px p̂x −i~ ∂

∂x

p p̂ −i~(ex
∂
∂x

+ ey
∂
∂y

+ ez
∂
∂z

)

kinetic energy
Kx K̂x − ~2

2m
∂2

∂x2

K K̂ − ~2

2m
( ∂

2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )

total energy E Ĥ T̂ + V̂
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Operators
the Hamiltonian, Ĥ = K̂ + V̂ , is a Hermitian operator

V̂ (x , y , z) is hermitian; it just stands for a multiplication by the potential

function

〈η|V̂ |Ψ〉 =

∫
η∗V̂ Ψdτ =

∫
η∗ · V̂ ·Ψdτ

=

∫
η∗ · V̂ ∗ ·Ψdτ (V̂ = V̂ ∗ real function)

=

∫
V̂ ∗ · η∗ ·Ψdτ = 〈V̂ η|Ψ〉 (multiplication is commutative)
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Operators
the Hamiltonian, Ĥ = K̂ + V̂ , is a Hermitian operator

p̂x = ~
i

d
dx

and the wavefunction must vanish at infinity

recall that, (u · v)′ = u′ · v + u · v′, therefore,
∫

u · v′ = u · v −
∫

u′ · v

〈η|p̂x |Ψ〉 =

~
i

∞∫
−∞

η
∗ dΨ

dx
dx =

[ ~
i
η
∗Ψ

]∞
−∞
−

~
i

∞∫
−∞

dη∗

dx
Ψdx = 0 +

∞∫
−∞

( ~
i

dη

dx

)∗
Ψdx

= 〈p̂xη|Ψ〉

K̂x is hermitian

〈η|K̂x |Ψ〉 = −
1

2m
〈η|p̂2

x |Ψ〉 = −
1

2m
〈p̂xη|p̂x |Ψ〉 = −

1

2m
〈p̂2

x η|Ψ〉 = 〈K̂xη|Ψ〉
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Operators
properties of hermitian operators

If Ω̂ is a Hermitian operator then the eigenfunctions with different
eigenvalues are orthogonal.

Ω̂Ψi = ωi Ψi

Ω̂Ψj = ωj Ψj

 /take its complex conjugate

Ω̂∗Ψ∗i = ωi Ψ
∗
i

Ω̂Ψj = ωj Ψj

 Ψj · / then integrate

Ψ∗i · / then integrate

〈Ω̂Ψi |Ψj 〉 =

∫
ΨjΩ̂

∗Ψ∗i dτ = ωi

∫
Ψj Ψ

∗
i dτ

〈Ψi |Ω̂Ψj 〉 =

∫
Ψ∗i Ω̂Ψj dτ = ωj

∫
Ψ∗i Ψj dτ

⇒ (ωi − ωj )

∫
Ψ∗i Ψj dτ = 0

(ωi 6= ωj ! ) =⇒
∫

Ψ∗i Ψjdτ = 0
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Operators
properties of hermitian operators

If Ω̂ is a hermitian operator then any linear combination of
degenerate eigenstates/eigenfunctions is also an
eigenstate/eigenfunction with the same eigenvalue.

Ω̂Ψi = ωi Ψi

Ω̂Ψj = ωj Ψj

and ωi = ωj = ω

 Ω̂Ψi = ωΨi

Ω̂Ψj = ωΨj

Ψ = ci Ψi + cj Ψj

Ω̂Ψ = Ω̂(ci Ψi + cj Ψj ) = ci Ω̂Ψi + cjΩ̂Ψj

= ciωΨi + cjωΨj

= ω(ci Ψi + cj Ψj )

= ωΨ
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Operators
properties of hermitian operators

If Ω̂ is a hermitian operator then any degenerate
eigenstates/eigenfunctions can be orthogonalized.

Ω̂Ψi = ωi Ψi

Ω̂Ψj = ωj Ψj

and ωi = ωj = ω

 Ω̂Ψi = ωΨi

Ω̂Ψj = ωΨj

φi = Ψi

φj = Ψj + cΨi∫
φ∗i φj dτ =

∫
Ψ∗i (Ψj + cΨi )dτ

=

∫
Ψ∗i Ψj dτ + c

With c = −
∫

Ψ∗i Ψj dτ the functions become orthogonal, i.e.,
∫
φ∗i φj dτ = 0
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Operators
postulate III and IV

In any measurement of the observable associated with the

operator Ω̂, the only values that will ever be observed are the

eigenvalues ωi which satisfy the eigenvalue equation

Ω̂Ψi = ωi Ψi ⇒
∫

Ψ∗i Ω̂Ψidτ = ωi

If the state of the system is described by a normalized

wavefunction Ψ, then the average value of the observable

corresponding to the operator Ω̂ can be calculated as

〈ω〉 =
∫

Ψ∗Ω̂Ψdτ
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Operators
postulate IV

Any state of the quantum system can be obtained as the linear

combination of the eigenstates of any Ω̂

|Ψ〉 =
∑

i ci |Ψi 〉, cj = 〈Ψj |Ψ〉 =
∫

Ψ∗j Ψdτ

Ω̂ci |Ψi 〉 = ciωi |Ψi 〉

〈ω〉 =

∫
Ψ∗Ω̂Ψdτ =

∫ ∑
i

c∗i Ψ∗i Ω̂
∑

i

ci Ψi dτ =

∫ ∑
i

c∗i Ψ∗i
∑

i

ciωi Ψi dτ

=

∫ ∑
i

c∗i Ψ∗i ciωi Ψi dτ +

∫ ∑
i

∑
j

j 6=i

c∗i Ψ∗i cjωj Ψj dτ

=
∑

i

{
|ci |2ωi ·

∫
Ψ∗i Ψi dτ

}
+
∑
i,j
j 6=i

c∗i cjωj

∫
Ψ∗i Ψj dτ

=
∑

i

|ci |2ωi + 0
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Operators
postulate IV

=⇒ c2i is the probability to find the quantum system in state i .

Ω̂ci Ψi = ciωi Ψi and
∫

Ψ∗Ψdτ = 1 ⇒
∑

i |ci |2 = 1

1 =

∫
Ψ∗Ψdτ =

∫ ∑
i

c∗i Ψ∗i
∑

i

ci Ψi dτ

=

∫ ∑
i

c∗i Ψ∗i ci Ψi dτ +

∫ ∑
i,j
j 6=i

c∗i Ψ∗i cj Ψj dτ

=
∑

i

{
|ci |2 ·

∫
Ψ∗i Ψi dτ

}
+
∑
i,j
j 6=i

c∗i cj

∫
Ψ∗i Ψj dτ

=
∑

i

|ci |2 + 0
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Operators
commutator

ÂB̂Ψ = B̂ÂΨ (commutative)

ÂB̂Ψ 6= B̂ÂΨ (non commutative)

let’s introduce the commutator for two operators [Â, B̂]

[Â, B̂] = ÂB̂ − B̂Â

[Â, B̂] = 0 (Â and B̂ commute)

[Â, B̂] 6= 0 (Â and B̂ don’t commute)
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Operators
commutator

if two operators have the same set of eigenfunctions they commute, i.e., [Â, B̂] = 0

ÂΨ = a ·Ψ and B̂Ψ = b ·Ψ

[Â, B̂]Ψ = ÂB̂Ψ− B̂ÂΨ

= Â(bΨ)− B̂(aΨ)

= bÂΨ− aB̂Ψ

= b · aΨ− a · bΨ

= (b · a− a · b)Ψ = 0 ·Ψ (numbers commute)
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Operators
commutator

for compatible observables [Â, B̂] = 0

for incompatible observables [Â, B̂] 6= 0

Heisenberg’s uncertainty principle (derivation is not discussed)

∆A ·∆B =
1
2

∣∣∣ ∫ Ψ∗[Â, B̂]Ψdτ
∣∣∣

∆A ·∆B = σA · σB

standard deviation:

σx =
√
〈x − 〈x〉〉2 =

√
〈x2〉 − 〈x〉2
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Operators
commutator

The eigenfunction of momentum is completely delocalized (periodic boundary

conditions): φ1(x) = 1√
L
· e ikx

probability of finding the particle between x and x + dx

φ∗1(x) · φ1(x)dx =
1
L

dx

The eigenfunction of position operator is completely localized, but has indefinite

momentum: φ(x) = δ(x − a)

A possible representation of the Dirac-delta:

1
2π

∫ ∞
−∞

e ik(x−a)dk,

where k is proportional to the momentum: k = p/~

x̂φ(x) = aφ(x)
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Operators
commutator

p̂x = −i~
d

dx
and x̂ = x (multiply by x)

[p̂x , x̂ ]Ψ(x) = p̂x x̂Ψ(x)− x̂ p̂x Ψ(x)

= −i~
d [xΨ(x)]

dx
+ xi~

dΨ(x)

dx

= −i~Ψ(x)− i~x
dΨ(x)

dx
+ i~x

dΨ(x)

dx

= −i~Ψ(x)

[p̂x , x̂ ] = −i~Î (Î is the identity operator)

∆px ·∆x =
1
2

∣∣∣ ∫ Ψ∗[p̂x , x̂ ]Ψdτ
∣∣∣ =

1
2

∣∣∣ ∫ Ψ∗
(
−i~Î

)
Ψdτ

∣∣∣ =
1
2
~| − i |

∣∣∣ ∫ Ψ∗Ψdτ
∣∣∣ =

1
2
~

Heisenberg’s uncertainty principle: more precisely the position of

some particle is determined, the less precisely its momentum can be

known.
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The quantum harmonic oscillator
Potential energies are frequently

approximated around the minimum by a

quadratic term: e.g., in most of the cases

the vibration motion of two atoms of a

diatomic molecule can be well-described by

a harmonic oscillator,

V (R) ≈ V (Re ) + 1
2
∂2V
∂R2 |R=Re (R − Re )2.

Here Re is the equilibrium distance, k = ∂2V
∂R2 |R=Re is the spring constant, and

R − Re = x

−
~2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x)

−
~2

2m

d2Ψ(x)

dx2
+

1
2

kx2Ψ(x) = EΨ(x)

d2Ψ

dx2
+

2mE

~2
Ψ−

mk

~2
x2Ψ = 0

d2Ψ

dx2
+ (λ− α2x2)Ψ = 0

λ =
2mE

~2

α2 =
mk

~2

Let’s try to find an asymptotic solution when x →∞
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The quantum harmonic oscillator
asymptotic solution, x →∞

d2Ψ

dx2
+ (λ− α2x2)Ψ = 0

λ� α2x2

d2Ψ∞

dx2
= α2x2Ψ

Ψ∞ = e−
αx2
2

dΨ∞

dx
= −αx · e−

αx2
2

d2Ψ∞

dx2
= −αe−

αx2
2 + (−αx) · (−αxe−

αx2
2 )

= e−
αx2
2 (α2x2 − α) ≈ α2x2e−

αx2
2
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The quantum harmonic oscillator
Ψ∞× (a power series P), (Sommerfeld’s polynomial method)

Ψ = e−
αx2
2

∞∑
j=0

aj x
j = Ψ∞P

d2Ψ

dx2
=

d2Ψ∞

dx2
P + 2

dΨ∞

dx

dP

dx
+ Ψ∞

d2P

dx2

dΨ∞

dx
= −αxe−

αx2
2

d2Ψ∞

dx2
= α2x2e−

αx2
2 − αe−

αx2
2

d2Ψ

dx2
= e−

αx2
2

{
���α2x2 P − αP − 2αx

dP

dx
+

d2P

dx2

}
d2Ψ

dx2
+ (λ−���α2x2 )Ψ = e−

αx2
2

{
(λ− α)P − 2αx

dP

dx
+

d2P

dx2

}
= 0
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The quantum harmonic oscillator
Ψ∞× (a power series P)

d2Ψ

dx2
+ (λ− α2x2)Ψ =

{
(λ− α) P − 2αx

dP

dx
+

d2P

dx2

}
e−

αx2
2 = 0

P =
∞∑

j=0

aj x
j

dP

dx
=

∞∑
j=0

jaj x
j−1

d2P

dx2
=
∞∑

j=0

j(j − 1)aj x
j−2 =

∞∑
j=0

(j + 1)jaj+1x j−1 =
∞∑

j=0

(j + 2)(j + 1)aj+2x j

d2Ψ

dx2
+ (λ− α2x2)Ψ =

∞∑
j=0

{
(λ− α) aj − 2αjaj + (j + 1)(j + 2)aj+2

}
x j e−

αx2
2 = 0
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The quantum harmonic oscillator
the power series solution

0 =
∞∑

j=0

[
(j + 1)(j + 2)aj+2 − α(2j + 1)aj + λaj

]
x j

to hold for all values of x, the coefficients must be zero

0 = (j + 1)(j + 2)aj+2 − α(2j + 1)aj + λaj

aj+2 =
α(2j + 1)− λ
(j + 1)(j + 2)

aj
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The quantum harmonic oscillator
the power series solution

Because Ψ = e−
αx2
2
∑∞

j=0 aj x
j →∞ as x →∞

one must terminate the power series

let’s terminate at j = v + 2,

av+2 = 0

av+2 = 0 =
α(2v + 1)− λ
(v + 1)(v + 2)

av

λ = α(2v + 1)

higher order terms will be zero as well

λ =
2mE

~2

α =

√
mk

~
2mE

~2
=

√
mk

~
(2v + 1)

E =
1
2

√
k

m
~(2v + 1)

E = ~ω(v +
1
2

), v = 0, 1, 2, . . .
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The quantum harmonic oscillator
Hermite polynomials

Ψ(x) = Nv · Hv (y) · e
−y2

2

Nv is a normalization factor

Hv (y) is a Hermite polynomial

y =
√
αx

recursion, Hv+1 − 2yHv + 2vHv−1 = 0 ;

let’s terminate at j = n + 2,

an+2 = 0

an+2 = 0 =
α(2n + 1)− λ
(n + 1)(n + 2)

an

λ = α(2n + 1)

higher order terms will be zero as well
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Particle on the ring problem
de Broglie + classical physics

z component of angular momentum:

Jz = rp

Erot =
J2z
2I
, I = mr2

p =
h

λ
Jz = r

h

λ

2πr = m` · λ m` ∈ 0,±1,±2, . . .

Jz =
m`�λh

2π�Aλ
= m`~

Erot =
m2
`~

2

2I
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Particle on the ring problem
Schrödinger equation, V̂ = 0

ĤΨ(x) = EΨ(x)

− ~2

2m

{
∂2Ψ

∂x2
+
∂2Ψ

∂y2

}
= EΨ
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Particle on the ring problem
polar coordinates; plane, constant radius

x = r · cosϕ

y = r · sinϕ

r2 = x2 + y2

ϕ = tan−1
y

x

(tan−1 x)′ =
1

1 + x2

f (r , ϕ) = f (r(x , y), ϕ(x , y))
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Particle on the ring problem
polar coordinates; plane, constant radius

f (r , ϕ) = f (r(x , y), ϕ(x , y))

∂f

∂x
=
∂f

∂r

∂r

∂x
+
∂f

∂ϕ

∂ϕ

∂x

∂f

∂y
=
∂f

∂r

∂r

∂y
+
∂f

∂ϕ

∂ϕ

∂y

if r =const then ∂r
∂x

= ∂r
∂y

= 0

∂f

∂x
=
∂f

∂ϕ

∂ϕ

∂x

∂f

∂y
=
∂f

∂ϕ

∂ϕ

∂y

∂ϕ

∂x
=

1
1 + (y/x)2

·
−y

x2
=
−y

r2
=
− sinϕ

r

∂ϕ

∂y
=

1
1 + (y/x)2

·
1
x

=
x

r2
=

cosϕ

r

∂f

∂x
=
∂f

∂ϕ

− sinϕ

r

∂f

∂y
=
∂f

∂ϕ

cosϕ

r

130



Particle on the ring problem
polar coordinates; plane, constant radius

∂f

∂x
=
∂f

∂ϕ

− sinϕ

r
= g(r(x , y), ϕ(x , y))

∂2f

∂x2
=
∂ ∂f
∂x

∂x
=
∂ ∂f
∂x

∂r

∂r

∂x
+
∂ ∂f
∂x

∂ϕ
·
∂ϕ

∂x

=
∂ ∂f
∂x

∂ϕ
·
∂ϕ

∂x
=
∂ ∂f
∂ϕ
· − sinϕ

r

∂ϕ
·
∂ϕ

∂x

= (−
∂2f

∂ϕ2
·

sinϕ

r
+
∂f

∂ϕ
·
−1
r

∂ sinϕ

∂ϕ
)(−

sinϕ

r
)

=
sin2 ϕ

r2
∂2f

∂ϕ22
+

1
r2

cosϕ sinϕ
∂f

∂ϕ

∂f

∂y
=
∂f

∂ϕ

cosϕ

r
= h(r(x , y), ϕ(x , y))

∂2f

∂y2
=
∂ ∂f
∂y

∂y
=
∂ ∂f
∂y

∂r

∂r

∂y
+
∂ ∂f
∂y

∂ϕ
·
∂ϕ

∂y

=
∂ ∂f
∂y

∂ϕ

∂ϕ

∂y
=
∂ ∂f
∂ϕ
· cosϕ

r

∂ϕ
·
∂ϕ

∂y

= (−
∂2f

∂ϕ2
·

cosϕ

r
+
∂f

∂ϕ
·
1
r

∂ cosϕ

∂ϕ
)(

cosϕ

r
)

=
cos2 ϕ

r2
∂2f

∂ϕ22
+

1
r2

(− sinϕ) cosϕ
∂f

∂ϕ

∂2

∂x2
+

∂2

∂y2
=

1
r2

∂2

∂ϕ2
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Particle on the ring problem
polar coordinates; plane, constant radius

−
~2

2m

{
∂2Ψ

∂x2
+
∂2Ψ

∂y2

}
= EΨ

∂2

∂x2
+

∂2

∂y2
=

1
r2

∂2

∂ϕ2

−
~2

2mr2
d2Ψ(ϕ)

dϕ2
= EΨ(ϕ)

d2Ψ(ϕ)

dϕ2
= −

2IE

~2
Ψ(ϕ)

Ψ(ϕ) = Ae im`ϕ

d2Ψ(ϕ)

dϕ2
= −m2

`�Ae im`ϕ = −
2IE

~2 �
Ae im`ϕ

m2
` =

2IE

~2

E =
m2
`~

2

2I
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Particle on the ring problem
polar coordinates; plane, constant radius

Ψ(ϕ) = Ae im`ϕ

Born’s interpretation∫ ∞
−∞

Ψ∗(ϕ)Ψ(ϕ)dϕ = 1∫ 2π

0
Ae−im`ϕAe im`ϕdϕ = A22π = 1

Ψ(ϕ) =
1
√
2π

e im`ϕ

cyclic boundary condition:

Ψ(ϕ+ 2π) = Ψ(ϕ)

Ψ(ϕ+ 2π) =
1
√
2π

e im`(ϕ+2π)

=
1
√
2π

e im`(ϕ)e(iπ)2m`

= Ψ(ϕ)(−1)2m`

1 = (−1)2m` ⇔ m` = 0,±1,±2, . . .

E =
m2
`~

2

2I
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Spherical coordinates

x = r sinϑ cosϕ r =
√

x2 + y2 + z2

y = r sinϑ sinϕ ϑ = cos−1
z

r

z = r cosϑ ϕ = tan−1
y

x
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Spherical coordinates
the Hamiltonian in Cartesian coordinates

Ĥ = − ~2

2m
(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ) + V̂

∇2 = ∇ · ∇ = ∆ laplacian

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

Ĥ = − ~2

2m
(∇2) + V̂
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Particle on a sphere
the Hamiltonian in spherical coordinates, r = constant

without derivation:

∇2 =
∂2

∂r2 +
2
r

∂

∂r
+

1
r2 sinϑ

∂

∂ϑ
(sinϑ

∂

∂ϑ
) +

1
r2 sin2 ϑ

∂2

∂ϕ2

Supposing that r = constant

− ~2

2m
1
r2 Λ̂2Ψ(ϑ, ϕ) = EΨ(ϑ, ϕ),

where Λ̂2 =
1

sinϑ

∂

∂ϑ
(sinϑ

∂

∂ϑ
) +

1
sin2 ϑ

∂2

∂ϕ2

−~2

2I
Λ̂2Ψ(ϑ, ϕ) =EΨ(ϑ, ϕ)

separation of variables: Ψ(ϑ, ϕ) = Θ(ϑ) · Φ(ϕ)

136



Particle on a sphere

1
sinϑ

∂

∂ϑ
(sinϑ

∂ΘΦ

∂ϑ
)+

1
sin2 ϑ

∂2ΘΦ

∂ϕ2 = −2IE
~2

ΘΦ

Φ

sinϑ

∂

∂ϑ
(sinϑ

∂Θ

∂ϑ
)+

Θ

sin2 ϑ

∂2Φ

∂ϕ2 +
2IE
~2

ΘΦ = 0

multiply by
sin2 ϑ

ΘΦ
sinϑ

Θ

∂

∂ϑ
(sinϑ

∂Θ

∂ϑ
)+

1
Φ

∂2Φ

∂ϕ2 +
2IE
~2

sin2 ϑ = 0

Here
1
Φ

∂2Φ

∂ϕ2must be a constant!

It is supposed to be negative to obtain a periodic solution.

1
Φ

∂2Φ

∂ϕ2 =−m2
` =⇒ Φ = e im`ϕ
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Particle on a sphere

sinϑ

Θ

∂

∂ϑ
(sinϑ

∂Θ

∂ϑ
) +

1
Φ

∂2Φ

∂ϕ2 +
2IE
~2

sin2 ϑ = 0

1
Φ

∂2Φ

∂ϕ2 = −m2
`

sinϑ
∂

∂ϑ
(sinϑ

∂Θ

∂ϑ
)−m2

`Θ +
2IE
~2

sin2 ϑΘ = 0

introduce ζ = cosϑ⇒ ∂

∂ϑ
=
∂ζ

∂ϑ

∂

∂ζ
= − sinϑ

∂

∂ζ

please, note that sin2 ϑ = 1− ζ2

(1− ζ2)
∂

∂ζ
((1− ζ2)

∂Θ

∂ζ
)−m2

`Θ +
2IE
~2

(1− ζ2)Θ = 0
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Particle on a sphere

(1− ζ2)

[
∂2Θ

∂ζ2
− 2ζ

∂Θ

∂ζ
+

{
2IE
~2
−

m2
`

1− ζ2

}
Θ

]
= 0

This equation can be solved using the

Θ(ζ) =(1− ζ2)|m`|/2
∞∑

r=0

crζ
r Ansatz.

To obtain non-singular solutions
2IE
~2

= `(`+ 1),

where ` is an integer ` ≥ |m`|.

(1− ζ2)

[
∂2Θ

∂ζ2
− 2ζ

∂Θ

∂ζ
+

{
`(`+ 1)−

m2
`

1− ζ2

}
Θ

]
= 0

associated Legendre differential equation

spherical harmonics Y`,m`
(ϑ, ϕ) = Θ`m`

(cos(ϑ))e im`φ
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Particle on a sphere

− ~2

2m
1
r2

Λ̂2Y`,m`
(ϑ, ϕ) = EY`,m`

(ϑ, ϕ),

E =`(`+ 1)
~2

2I
, ` = 0, 1, 2, . . .

m` =− `,−(`− 1), . . . , 0, . . . , `− 1, `

every energy level is (2`+1)-fold degenerate

` - orbital angular momentum quantum number

m` - magnetic quantum number

−~2Λ̂2Y`,m`
(ϑ, ϕ) = ~2`(`+ 1)Y`,m`

(ϑ, ϕ)
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Angular momentum in QM

L = r × p⇔L̂ =
~
i
r̂ ×∇

L̂z = x̂ p̂y−ŷ p̂x =
~
i

∂

∂φ

L̂z Φ(φ) =
~
i

∂Φ

∂φ
= ~mΦ(φ)⇒ Φ(φ) = e imφ

From the periodic boundary condition:

Φ(φ+ 2π) =Φ(φ),m = 0,±1± 2,±3, . . .

L̂2 = L̂2x + L̂2y + L̂2z = −~2
{

1
sinϑ

∂

∂ϑ
(sinϑ

∂

∂ϑ
) +

1
sin2 ϑ

∂2

∂ϕ2

}
= −~2Λ̂2

L̂2Y`,m`
(ϑ, φ) = ~2`(`+ 1)Y`,m`

(ϑ, ϕ)⇒
` = 0, 1, 2, . . .

m = −`,−`+ 1, . . . , (`− 1), `
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Spherical harmonics
wavefunctions

` m` Y`,m`
(ϑ, ϕ)

0 0
( 1
4π

) 1
2

1 0
( 3
4π

) 1
2 cosϑ

±1 ∓
( 3
8π

) 1
2 sinϑe±iϕ

2 0
( 5
16π

) 1
2 (3 cos2 ϑ− 1)

±1 ∓
( 15
8π

) 1
2 cosϑ sinϑe±iϕ

±2 ∓
( 15
32π

) 1
2 sin2 ϑe±2iϕ

real combinations: px =
Y1,−1 − Y1,1√

2
, py =

Y1,−1 + Y1,1

i
√
2
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Hydrogen atom

{
− ~2

2µ
∇2 − e2

4πε0r

}
Ψ(r , ϑ, ϕ) = EΨ(r , ϑ, ϕ)

∇2 =
1
r2

∂

∂r
(r2

∂

∂r
) +

1
r2 sinϑ

∂

∂ϑ
(sinϑ

∂

∂ϑ
) +

1
r2 sin2 ϑ

∂2

∂ϕ2

∇2 =
1
r2

∂

∂r
(r2

∂

∂r
) +

Λ2

r2
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Hydrogen atom

Separation of variables: Ψ(r , ϑ, ϕ) = R(r)Y`,m`(ϑ, ϕ)

− ~2

2µr2

{
Y`,m`

∂

∂r
(r2 ∂R

∂r
) + R(r)Λ2Y`,m`

}
− e2

4πε0r
RY`,m` = ERY`,m`

− ~2

2µr2

{
Y`,m`

∂

∂r
(r2 ∂R

∂r
) + R(r)`(`+ 1)Y`,m`

}
− e2

4πε0r
RY`,m` = ERY`,m`

− ~2

2µr2

{
∂

∂r
(r2 ∂R

∂r
) + R(r)`(`+ 1)

}
− e2

4πε0r
R = ER

The solution can be obtained using the Sommerfeld’s polynomial

method.
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Hydrogen atom

The results:

R`n(r) =
1
r
e−r/r0P`n(

2r
r0

), where r0 = n
4πε0~2

µe2
, 0 ≤ l < n,

n = 1, 2, . . . and P l
n(x) are the so-called Laguerre polynomials.

Schrödinger: En = − mee
4

8ε20h2n2

Bohr: En = − mee
4

8ε20h2n2
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Hydrogen atom
radial wavefunctions, Laguerre polynomials

Ψ(r , ϑ, ϕ) = Rn,`(r)Y`,m` (ϑ, ϕ)

n ` Rn,`

1 0 2
(

Z
a

) 3
2

e−%/2

2 0 1√
8

(
Z
a

) 3
2

(2− %)e−%/2

2 1 1√
24

(
Z
a

) 3
2
%e−%/2

3 0 1√
243

(
Z
a

) 3
2

(6− 6%+ %2)e−%/2

3 1 1√
486

(
Z
a

) 3
2

(4%− %2)e−%/2

3 2 1√
2430

(
Z
a

) 3
2
%2e−%/2

% = 2Zµe2r
4πε0~2n

= 2Zr
na
, where a = 4πε0~2

µe2 is the Bohr radius
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Hydrogen atom
radial wavefunctions, Laguerre polynomials

hydrogenlike atomic wavefunctions: Ψn,`,m` (r , ϑ, ϕ) = Rn,`(r)Y`,m` (ϑ, ϕ)

n ` m` Rn,` Y`,m`

1 0 0 2
(

Z
a

) 3
2

e−%/2
( 1
4π

) 1
2

2 0 0 1√
8

(
Z
a

) 3
2

(2− %)e−%/2
( 1
4π

) 1
2

2 1 0 1√
24

(
Z
a

) 3
2
%e−%/2

( 3
4π

) 1
2 cosϑ

2 1 +1 1√
24

(
Z
a

) 3
2
%e−%/2

( 3
8π

) 1
2 sinϑe iϕ

2 1 −1 1√
24

(
Z
a

) 3
2
%e−%/2

( 3
8π

) 1
2 sinϑe−iϕ

3 0 0 1√
243

(
Z
a

) 3
2

(6− 6%+ %2)e−%/2
( 1
4π

) 1
2

% = 2Zµe2r
4πε0~2n

= 2Zr
na
, where a = 4πε0~2

µe2 is the Bohr radius
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Hydrogen atom
atomic units, fixed nucleus

{
− ~2

2me
∇2

e −
e2

4πε0r

}
Ψ = EΨ

x → λx ′, y → λy ′, z → λz ′

∂2

∂x2
=

1
λ2

∂2

∂x ′2

r =
√
x2 + y2 + z2 ⇒ r →

√
(λx ′)2 + (λy ′)2 + (λz ′)2 = λr ′
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Hydrogen atom
atomic units, fixed nucleus

{
− ~2

2me
∇2

e −
e2

4πε0r

}
Ψ = EΨ

⇓{
− ~2

2meλ2
(∇′e)2 − e2

4πε0r ′λ

}
Ψ′ = EΨ′

select λ to fulfill

~2

meλ2
=

e2

4πε0λ
= Ea

⇓

Ea

{
−1
2

(∇′e)2 − 1
r ′

}
Ψ′ = EΨ′

Ea

{
−1
2

(∇′e)2 − 1
r ′

}
Ψ′ = EΨ′

⇓{
−1
2

(∇′e)2 − 1
r ′

}
Ψ′ = E ′Ψ′

E ′ =
E
Ea

atomic units for distance and energy:

λ =
4πε0~2

mee2
= a0,Bohr radius

Ea =
~2

mea20
, hartree
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Atomic orbitals
shells and subshells

atomic orbital (AO) - one electron wavefunction (Ψn,`,m`
)

quantum numbers:

n - principal

` - azimuthal (orbital angular momentum)

m` - magnetic

150



Atomic orbitals
shells and subshells

a shell consists of AOs with the same principal quantum

number n (K, L, M, N, . . . )

subshell: orbitals with the same n and ` quantum numbers

(s, p, d, f, g, . . . subshells)

for example: n=1,2, and 3
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Atomic orbitals
s orbitals, ` = 0, m` = 0

Ψs = c ·
(

Z
a

) 3
2

Pn(%)e−%/2 ·
( 1
4π

) 1
2

the angular wavefunction is constant, Y0,0(ϑ, ϕ) =
( 1
4π

) 1
2

spherical symmetry

the Pn(%)s are Laguerre polynomials, and their roots give the number of nodal

surfaces
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Atomic orbitals
p orbitals, ` = 1, m` = 0,±1

Ψp0 =
1√
24

(
Z

a

) 3
2
%e−%/2 ·

(
3
4π

) 1
2

cosϑ = % cosϑf (%) = zf (%) = Ψpz

Ψp+1 =
1√
24

(
Z

a

) 3
2
%e−%/2 ·

(
3
8π

) 1
2

sinϑe iϕ

Ψp−1 =
1√
24

(
Z

a

) 3
2
%e−%/2 ·

(
3
8π

) 1
2

sinϑe−iϕ
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Atomic orbitals
p orbitals, ` = 1, m` = 0,±1

to get rid of the complex variable we take linear combinations of Ψp+1 and Ψp−1

Ψpx = Ψp+1 + Ψp−1 =
1
√
24

(
Z

a

) 3
2
%e−%/2 ·

(
3
8π

) 1
2

sinϑ · (e iϕ + e−iϕ)

Ψpy = Ψp+1 −Ψp−1 =
1
√
24

(
Z

a

) 3
2
%e−%/2 ·

(
3
8π

) 1
2

sinϑ · (e iϕ − e−iϕ)

% sinϑ · (e iϕ + e−iϕ) = % sinϑ · 2 cosϕ⇒ Ψpx = xf (%)

% sinϑ · (e iϕ − e−iϕ) = % sinϑ · 2i sinϕ⇒ Ψpy = yf (%)
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Atomic orbitals
p orbitals, ` = 1
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Atomic orbitals
d orbitals, ` = 2

similarly to p orbitals we make linear combinations of complex WFs

to get real functions

dxy = xyf (r)

dyz = yzf (r)

dzx = zxf (r)

dx2−y2 =
1
2

(x2 − y2)f (r)

dz2 =

√
3
2

(3z2 − r2)f (r)
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Atomic orbitals
d orbitals, ` = 2
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Spherical harmonics
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Atomic orbitals
shells and subshells

atomic orbital (AO) - one electron wavefunction (Ψn,`,m`
)

quantum numbers:

n - principal

` - azimuthal (orbital angular momentum)

m` - magnetic

ms - spin
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spin
an intrinsic angular momentum of a particle

Stern - Gerlach experiment(1922)

N

S

A beam of silver atoms. Inhomogeneous magnetic field!
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spin
an intrinsic angular momentum of a particle
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spin
Magnetic dipole moment, relation to the angular momentum

Classical description

m = SIn, where I is the current in an electric current loop, S is the

surface of the loop, and vector n perpendicular to the loop.

If the current is produced by a single charged particle I = e/T ,

where T is the periodic time of the motion.

I = 2meπre
2meπrT = pe

2meπr = erp
2meπr2

= e`
2meπr2

m = r2πe`
2meπr2

= e`
2me

Torque (moment of force): r × F = m× B

Force on a moment : F = ∇ (mB)
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spin
an intrinsic angular momentum of a particle

Stern - Gerlach experiment

to confirm the Bohr-Sommerfeld theory

(
∮

E(p,r)=const. pdr = nh)

They assumed that for Ag atoms L=1. (We know that it is

zero [1s22s22p63s23p63d104s24p64d105s1].)

If L=1 then the beam should split into three components.

Ag atoms are in ` = 0 state ⇒ no splitting

the spatial orientation is quantized
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spin
an intrinsic angular momentum of a particle

Stern - Gerlach experiment(1922)

Uhlenbeck and Goudsmit - spin(1925): An internal angular

momentum of the electron (Ŝ) produces on additional

magnetic moment:m̂z = −gµB
~ Ŝz , where g is the g-factor, and

µB = e~
2m is the Bohr magneton, e is the positive unit charge.

no spin in non-relativistic quantum mechanics

ad hoc introduction by Pauli

it occurs naturally in Dirac’s relativistic QM(1928) (g = 2)

correction from quantum electrodynamics (1948):

g = 2.002319
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spin
an intrinsic angular momentum of a particle

The intrinsic angular momentum (S) can be characterized by the eigenvalues of

the Ŝz and Ŝ2 operators, where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z .

Ŝzσ = ~szσ

Ŝ2σ = ~2s(s + 1)σ

The possible values of s are 0, 12 , 1,
3
2 , 2, . . . , while ms = −s,−s + 1, . . . , s

fermions like electron, proton, neutron (half-integer

spin, s = 1
2 ,

3
2 ,

5
2 , . . . )

bosons like photon, W bosons,4He (integer spin,

s = 0, 1, 2, . . . )

The eigenvalues of spin for an electron:

Ŝzσ = ± ~
2σ, frequently used notation: Ŝzα = ~

2α, Ŝzβ = − ~
2β
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spin
Wave function of the particle and the spin

The wavefunction of the electron must be extended by the spin: E.g., the

wavefunction of the electron in the H atom:

Ψn,`,m`,ms = 1
2

(r , θ, φ) = Ψn,`,m`(r , θ, φ)α

Wave functions with different spins are orthogonal to each other.

Vector representation: Ψn,`,m`α =

Ψn,`,m`

0

, Ψn,`,m`β =

 0

Ψn,`,m`


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spin
Total angular momentum of an electron

The x , y , z component of the total angular momentum of a

particle is the sum of the orbital and spin angular momentums:

Ĵi = L̂i + Ŝi , i = x , y , z , Ĵ2 = Ĵ2x + Ĵ2y + Ĵ2z

In the non-relativistic case (the speed of the particles are negligible

with respect to the speed of light) the Ĵ2, Ĵz , Ŝ
2, Ŝz , L̂

2, L̂z

operators commute with each other and with the Hamilton

operator, i.e., we can find a common set of eigenfunctions for all

these operators. These operators belong to the compatible

measurable physical quantities.

In the relativistic case: only Ĵ2, Ĵz and Ĥ commute with each other.
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spin
Magnetic dipole moment in QM

In general m̂z = −g e
2m

Ĵz

for the orbital angular momentum of the electron: m̂ = − e
2me

L̂ = −µB
~ L̂,

i.e., gL = 1

for an electron without orbital angular momentum: m̂ = − 2µB
~ Ŝ, i.e.,

gS = 2

in general the Landé gJ factor should be used: m̂ = − gJµB
~ Ĵ, where

gJ = gL
j(j+1)−s(s+1)+`(`+1)

2j(j+1)
+ gS

j(j+1)+s(s+1)−`(`+1)
2j(j+1)

abs. value of magnetic moment: M = gJ

√
j(j + 1)µB
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spin
Zeeman effect

In magnetic field the Hamiltonian contains an additional term:

V̂mag = −m̂B, where B is the magnetic induction vector.

Supposing that the magnetic field is oriented along the z axis,

V̂mag = −m̂zBz = gJµB
~ ĴzBz

Due to this term the energy levels depend on the jz quantum

numbers (Zeeman effect).
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Corrections from the Dirac equation (hydrogen atom)

total angular momentum quantum number: j = |`± s|, e.g.,

` = 0, s orbital, j = 1
2

` = 1, p orbital, j = 1
2 ,

3
2

` = 2, d orbital, j = 3
2 ,

5
2

The energy is slightly j-dependent (fine structure of the H

atom: splitting of the spectral lines of atoms due to electron

spin)

Ej n ≈ −
µc2α2

2n2

[
1 +

α2

n2

(
n

j + 1
2
− 3

4

)]
,

where α = e2

4πε0~c = 1
137 is the fine-structure constant
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Corrections from the Dirac equation (hydrogen atom)

j-dependent relativistic correction: spin-orbit splitting

With respect the resting frame of the electron the proton is

orbiting around the electron and producing a magnetic field B,

B = − 1
c2

v × E

From a brief derivation (sherically symmetric pot.,

V (r) = V (r)) the magnetic field is: B = 1
meec2

1
r
∂U(r)
∂r L

(U(r) = eV (r) is the pot. energy)

As the energy shift is ∆Emag = −mzBz and m̂z = −2µB
~ Ŝz

then ∆Ĥmag = 1
2

2µB
~meec2

1
r
∂U(r)
∂r L̂ · Ŝ, where the ’Thomas-half’

is also included (Llewellyn Thomas, 1926).
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spin
Lyman alpha transition in hydrogen (1215.668 and 1215.674 Å)

B = 0 B 6= 0 The slitting of energies according

to the j values is a relativistic

effect.

The Zeeman effect splits the energy levels of the H atom. As the

value of gJ depends on the j , `, s values the extent of the splitting

is different for the energy levels.
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vector model for angular momentum

cyclic permutations[
ˆ̀
z , ˆ̀

x

]
= i~ˆ̀

y[
ˆ̀
y , ˆ̀

z

]
= i~ˆ̀

x[
ˆ̀2, ˆ̀

z

]
= 0,

[
ˆ̀
x , ˆ̀

y

]
= i~ˆ̀

z

The angular momentum can be

visualized as a vector with length

~
√
`(`+ 1) rotating around the z

axis.
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vector model for the spin

cyclic permutations

[ŝx , ŝy ] = i~ŝz

[ŝz , ŝx ] = i~ŝy

[ŝy , ŝz ] = i~ŝx[
ŝ2, ŝz

]
= 0
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Singlet and triplet states

Ŝi = Ŝ
(1)
i + Ŝ

(2)
i

singlet combination:
1√
2

(α(1)β(2)− α(2)β(1))

multiplicity: 1

triplet combinations:

α(1)α(2)

1√
2

(α(1)β(2) + α(2)β(1))

β(1)β(2)

multiplicity: 3

175



vector model for the total angular momentum

In general, if Ĵ = Ĵ1 + Ĵ2 →

j = |j1 − j2|, |j1 − j2|+ 1, . . . , |j1 + j2|
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Selection rules
Time dependent perturbation

Let’s suppose that the stationary system is effected by a small

time-dependent external force (perturbation, ˆK(t)):
~
i
∂Ψ
∂t

+
(
Ĥ0 + K̂(t)

)
Ψ = 0

The eigenfunctions of the unperturbed Hamiltonian are Ψr ,

Ĥ0Ψr = Er Ψr . At t = 0 the system is in state Ψi .

Due to the perturbation at t the wavefunction is the lin. comb. of the

eigenstates of Ĥ0: ψ =
∑

r cr (t)Ψre
− i

~ Er t , where cr (t = 0) = δir , i.e.,

ci (t = 0) = 1 and cr (t = 0) = 0 if r 6= i .
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Selection rules
Time dependent perturbation

One can easily show that dck
dt

= − i
~
∑

r Kkrcre
iωkr t , where ωkr = Ek−Er

~

and Kkr =
∫
ψ∗k K̂(t)ψrdτ .

As a "first order" approximation at the rhs of the
dck
dt

= − i
~
∑

r Kkrcre
iωkr t equation cr is set to zero except ci which is one.

Integrating the dck
dt

= − i
~Kkie

iωki t equations with respect to time, the

new c
(1)
k (t) = δki − i

~
∫ t

0 Kki (τ)e iωkiτdτ defines the transition probability:

W (i → k) = |ck (t)|2 = 1
~2

∣∣∫ t

0 Kki (τ)e iωkiτdτ
∣∣2, if i 6= k.
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Selection rules
Electric dipole transition

H atom in visible light. E field is homogeneous in the scale of the H atom.

Potential energy in the electric field: Epot =
∑

i ei Φ(ri ) =
∫
ρ(r)Φ(r)d3r , where

ρ is the density of electric charge Epot =
∫
ρ(r)Φ(r)d3r =∫

ρ(r)(Φ(0) +∇Φ|r=0 · r + 1
2

x,y,z∑
i,j

∂2Φ
∂xi∂xj

|r=0xixj + . . . )d3r .

If the total charge is zero and derivatives of E is supposed to be small,

Epot = −E|r=0
∫
ρ(r)rd3r = −Ed, where d is the electric dipole moment.
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Selection rules
Electric dipole transition

Transitions induced by a light beam, perturbation operator:

K̂ = eEx x̂sin(ωt) → Kkr = eExxkr sin(ωt)

W (i → k) =
e2E2

x
~2 |xki |2

∣∣∫ t

0 sin(ωt)e iωkiτdτ
∣∣2, where sin(ωt) can be

replaced by 1
2i

(
e iωt − e−iωt

)
W (i → k) =

e2E2
x

4~2 |xki |2
∣∣∣∫ t

0 e i((ωki +ω)τdτ −
∫ t

0 e i((ωki−ω)τdτ
∣∣∣2

The above transition probability large if ω ≈ ωki or ω ≈ −ωki : absorption

and induced emission of a photon.

The transition probability is proportional to the square of the transition

dipole moment: exki =
∫
ψ∗k exψrdτ
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Selection rules
Electric dipole transition

if a xki is zero the k ⇒ i transition is called forbidden.

As an example, investigate the Ψn=1,`=0,m`=0,ms = 1
2
⇒ Ψn=2,`=0,m`=0,ms = 1

2

transition! x1,0,0, 12⇒2,0,0, 12
=
∫

Ψ2,0,0, 12
xΨ1,0,0, 12

dτ . The value of this

integral is zero because of the symmetry. Ψ2,0,0, 12
and Ψ1,0,0, 12

are

symmetric functions, e.g., Ψ2,0,0, 12
(r) = Ψ2,0,0, 12

(−r), on the other hand

x is anti-symmetric.

Similarly, s ⇒ s, p ⇒ p, d ⇒ d, . . . transitions are all forbidden.

The selection rules for the hydrogen atom:

`
′

= `± 1, m
′
` = m`,m` ± 1, and m

′
s = ms

181



Many-electron systems
Pauli exclusion principle

Pauli exclusion principle (postulate VI of quantum mechanics):

No more than two electrons may occupy any given orbital, and

if they do so, their spins must be paired

There cannot exist two electrons having the same set of

quantum numbers

The total wavefunction must be antisymmetric with respect to

the interchange of all coordinates of two electrons (fermions)

182



Many-electron systems
Pauli exclusion principle

Ψ(x1, x2, . . . , xi , . . . , xj , . . . ) = −Ψ(x1, x2, . . . , xj , . . . , xi , . . . ),

where xi is a composite notation for the spatial coordinates and the

spin, xi = (ri , σi ).
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Many-electron systems
He ground state: 1s2 (fixed nucleus, independent particle approximation)

ĤH = −1
2
∇2 − 1

r

ĤHe = −1
2
∇2

1 −
1
2
∇2

2 −
2
r1
− 2

r2
+

1
r12

= ĥ1 + ĥ2 +
1
r12

For the sake of simplicity the e−–e− interac. is neglected:

Ĥapprox
He = ĥ1 + ĥ2

Ψ(1, 2) =Ψ(r1, r2) = φ1(r1) · φ2(r2) = φ1(1)φ2(2),

these are H atom-like wavefunctions (see page 146)

ĥiφi = Eiφi

E approx = E1 + E2, here E1 and E2 are the H atom-like energies (Z=2)

En = − Z 2

2n2
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Many-electron systems
He ground state: 1s2 (fixed nucleus, independent particle approximation)

let’s label the electrons φa(1) = 1s(1)α(1) and φb(2) = 1s(2)β(2)

Ψground(1, 2) = 1s(1)α(1) · 1s(2)β(2)

It is not anti-symmetric!

Ψ1
ground(1, 2) = 1√

2
(1s(1)α(1) · 1s(2)β(2)− 1s(2)α(2) · 1s(1)β(1)) =

1s(1)1s(2) 1√
2

(α(1)β(2)− α(2)β(1)).

It is the only possible anti-symmetric wavefunction. Ψ1
ground is the eigenfunction of

the Ŝz = Ŝz (1) + Ŝz (2) and Ŝ2 spin operators with ms = 0 and s = 1 quantum

numbers.
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Many-electron systems
He excited states

φa and φb are the occupied atomic orbitals

Degenerate product states (e-e interaction is not considered):

Φ1(1, 2) = φa(r1)φb(r2), Φ2(1, 2) = φa(r2)φb(r1)

These are orthogonal to each other,
∫
dr31
∫
dr32 Φ1(1, 2)Φ2(1, 2) = 0, and

degenerate with E approx. = Ea + Eb energy:

(ĥ1 + ĥ2)Φ1 = (ĥ1φa(r1)φb(r2) + φa(r1)ĥ2φb(r2)) =

Eaφa(r1)φb(r2) + φa(r1)Ebφb(r2) = (Ea + Eb)Φ1

To include the e-e interaction the wavefunction can be approximated by a linear

combination: Ψ = b1Φ1 + b2Φ2

(ĥ1 + ĥ2)Ψ = (Ea + Eb)Ψ =⇒ (ĥ1 + ĥ2 + V̂ )Ψ = (Ea + Eb + V̂ )Ψ
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Many-electron systems
He excited states

Introducing some shorthand notations:

V̂ = 1
r12

C =
〈

Φ1|V̂ |Φ1

〉
=
〈

Φ2|V̂ |Φ2

〉
=
∫
d3r1

∫
d3r2 |φa(r1)|2|φb(r2)|2

r12
,

K =
〈

Φ1|V̂ |Φ2

〉
=
〈

Φ2|V̂ |Φ1

〉∗
=
∫
d3r1

∫
d3r2

φ∗a (r1)φ∗b (r2)φb(r1)φa(r2)

r12
δσaσb ,

where δσaσb is 1 if spins σa and σb are equal (α-α or β-β ) and zero otherwise.

∆E = E − Ea − Eb

(
Ea + Eb + V̂

)
Ψ = EΨ ⇒ (−∆E + V̂ )Ψ = 0 (Ψ = b1Φ1 + b2Φ2)

b1
(
−∆E + V̂

)
Φ1 + b2

(
−∆E + V̂

)
Φ2 = 0
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Many-electron systems
He excited states

〈Φ1| /⇒ b1
(
−∆E + V̂

)
Φ1 + b2

(
−∆E + V̂

)
Φ2 = 0

〈Φ2| /⇒ b1
(
−∆E + V̂

)
Φ1 + b2

(
−∆E + V̂

)
Φ2 = 0

b1
(〈

Φ1|V̂ |Φ1

〉
−∆E

)
+ b2

〈
Φ1|V̂ |Φ2

〉
= 0

b1
〈

Φ2|V̂ |Φ1

〉
+ b2

(〈
Φ2|V̂ |Φ2

〉
−∆E

)
= 0

The result is a system of homogeneous linear equation:

b1 (C −∆E) + b2K = 0

b1K
∗ + b2 (C −∆E) = 0

To have a non-trivial solution the determinant of the coefficient matrix should

be zero: (C −∆E)2 − |K |2 = 0
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Many-electron systems
He excited states, matrices

A homogeneous system of linear equations:

c11x1 + c12x2 + c13x3+ . . . c1nxn = 0

c21x1 + c22x2 + c23x3+ . . . c2nxn = 0

...
...

cn1x1 + cn2x2 + cn3x3+ . . . cnnxn = 0

Matrix notation: C · x = 0, where

C =


c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

...

cn1 cn2 . . . cnn

, x =


x1

x2
...

xn


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Many-electron systems
He excited states, determinant of a matrix (2 by 2 and 3 by 3 case)

det(C) =

∣∣∣∣∣∣c11 c12

c21 c22

∣∣∣∣∣∣ = c11c22 − c21c12

det(C) =

∣∣∣∣∣∣∣∣∣
c11 c12 c13

c21 c22 c23

c31 c32 c33

∣∣∣∣∣∣∣∣∣
=c11c22c33 + c12c23c31 + c13c21c32

− c13c22c31 − c11c23c32 − c12c21c33.
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Many-electron systems
He excited states, adjoint of a matrix (3 by 3 case)

adj(C) =



+

∣∣∣∣∣∣c22 c23

c32 c33

∣∣∣∣∣∣ −
∣∣∣∣∣∣c12 c13

c32 c33

∣∣∣∣∣∣ +

∣∣∣∣∣∣c12 c13

c22 c23

∣∣∣∣∣∣
−

∣∣∣∣∣∣c21 c23

c31 c33

∣∣∣∣∣∣ +

∣∣∣∣∣∣c11 c13

c31 c33

∣∣∣∣∣∣ −
∣∣∣∣∣∣c11 c13

c21 c23

∣∣∣∣∣∣
+

∣∣∣∣∣∣c21 c22

c31 c32

∣∣∣∣∣∣ −
∣∣∣∣∣∣c11 c12

c31 c32

∣∣∣∣∣∣ +

∣∣∣∣∣∣c11 c12

c21 c22

∣∣∣∣∣∣


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Many-electron systems
He excited states, matrices, determinant

Formal solution of a inhomogeneous system of linear equation, C · x = b,

needs the inverse of matrix C: x = C−1 · b

C−1 = adj(C)/det(C) (see wikipedia page: Invertible matrix)

To have a non-trivial solution of the homogeneous system of linear

equation, the matrix C−1 should not exist. → det(C) = 0

b1 (C −∆E) + b2K = 0

b1K
∗ + b2 (C −∆E) = 0

To have a non-trivial solution the determinant of the coefficient matrix should

be zero: (C −∆E)2 − |K |2 = 0
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Many-electron systems
He excited states

We obtained two solutions for the energy: ∆E = C ± |K | or

E = Ea + Eb + C ± |K |

If ∆E = C + |K | then b1 = b2 = 1√
2
and

Ψ+ = 1√
2

(φa(r1)φb(r2) + φa(r2)φb(r1))α(1)β(2) ⇒ singlet state

If ∆E = C − |K | then b1 = −b2 = 1√
2
and

Ψ− = 1√
2

(φa(r1)φb(r2)− φa(r2)φb(r1))α(1)β(2) ⇒ triplet state

Pauli exclusion principle ⇒ Ψ1 = Ψ+(r1, r2)−Ψ+(r2, r1),

Ψ1 = 1√
2

(φa(r1)φb(r2) + φa(r2)φb(r1)) (α(1)β(2)− α(2)β(1))

Ψ3 = 1√
2

(φa(r1)φb(r2)− φa(r2)φb(r1)) (α(1)β(2) + α(2)β(1))
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Many-electron systems
He excited states

What are the meaning of the C and K coefficients?

C =
∫
d3r1

∫
d3r2 |φa(r1)|2|φb(r2)|2

r12
is the classical coulomb interaction of two

charged particle. It is always a positive quantity.

K =
∫
d3r1

∫
d3r2

φ∗a (r1)φ∗b (r2)φb(r1)φa(r2)

r12
δσaσb is the so-called exchange

interaction, no classical analog.

For the ground state, φa = φb = φn=1,`=0,m`=0, only the singlet combination,

Ψ1 can appear.

For the first excited state φa = φn=1,`=0,m`=0 and φb = φn=2,`=0,m`=0.
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Many-electron systems
He excited states

For states arising from the same configuration, the triplet state generally lies

lower than the singlet state (see Hund’s rule). Qualitative explanation:

Ψ3(r1, r1) = 0, i.e., the two electrons can not be at the same place. ↔

Ψ1(r1, r1) 6= 0, i.e., large repulsive coulomb force increases the energy.
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Many-electron systems
parahelium, orthohelium

Excitation of both of the electrons

requires an energy larger than the

ionization energy: only 1s1nl1

excitations appear in the spectra

No radiative transitions between singlet

and triplet states

Spectroscopically, He behaves like two

distinct species, parahelium and

orthohelium
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the Slater determinant
the easy way to build antisymmetric wavefunctions

Ψground = 1s1s[α(1)β(2)− β(1)α(2)]∣∣∣∣∣∣1s(1)α(1) 1s(1)β(1)

1s(2)α(2) 1s(2)β(2)

∣∣∣∣∣∣ = 1s(1)α(1)1s(2)β(2)− 1s(1)β(1)1s(2)α(2)

= 1s(1)1s(2)[α(1)β(2)− β(1)α(2)]

rows → electrons

columns → spinorbitals
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the Slater determinant
Determinant

A homogeneous system of linear equations:

c11x1 + c12x2 + c13x3+ . . . +c1nxn = 0

c21x1 + c22x2 + c23x3+ . . . +c2nxn = 0

...
...

cn1x1 + cn2x2 + cn3x3+ . . . +cnnxn = 0

Matrix notation: C · x = 0, where

C =


c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

...

cn1 cn2 . . . cnn

, x =


x1

x2
...

xn


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the Slater determinant
Determinant

Formal solution of a inhomogeneous system of linear equation, C · x = b,

needs the inverse of matrix C: x = C−1 · b

C−1 = adj(C)/det(C) (see wikipedia page: Invertible matrix)

To have a non-trivial solution of the homogeneous system of linear

equation, the matrix C−1 should not exist. → det(C) = 0

det(C) =
∑

{p1,p2,...,pn}

(−1)pc1p1c2p2c3p3 . . . cnpn , where the sum runs on the

whole set of permutations of numbers 1, 2, 3, . . . , n and p is the parity

(number of exchange of indices requiered to obtain the given

permutation) of the given permutation.
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the Slater determinant
Determinant

Some properties of determinants:

det(AB) = det(A)det(B)

det(AT) = det(A), where AT denotes the transpose of A.

If matrix A is composed from column vectors,

A = ([a1] , [a2] , [a3] , . . . , [an]), and vectors [ai ] are linearly

dependent then det(A) = 0.

det([a1] , [a2] , . . . , [ai ] , . . . , [aj ] , . . . , [an]) =

−det([a1] , [a2] , . . . , [aj ] , . . . , [ai ] , . . . , [an]).
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the Slater determinant
Determinant

Expansion of a determinant along a column (e.g., second column)(or a
row):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

.

.

.
.
.
.

an1 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+2a12 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 a23 . . . a2n

a31 a33 . . . a3n

.

.

.

an1 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

+(−1)2+2a22 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 . . . a1n

a31 a33 . . . a3n

.

.

.

an1 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)3+2a32 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 . . . a1n

a21 a23 . . . a2n

.

.

.
.
.
.

an1 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)4+2a42 · . . .
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the Slater determinant
Li atom

ΦLi =
1
√
3!

∣∣∣∣∣∣∣∣∣
1s(1)α(1) 1s(1)β(1) 2s(1)α(1)

1s(2)α(2) 1s(2)β(2) 2s(2)α(2)

1s(3)α(3) 1s(3)β(3) 2s(3)α(3)

∣∣∣∣∣∣∣∣∣
rows → electrons

columns → spinorbitals
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the Slater determinant
Li atom

if two columns are equal - three electrons are on one spatial orbital

the Pauli exclusion principle is not fulfilled

ΦLi =
1
√
3!

∣∣∣∣∣∣∣∣
1s(1)α(1) 1s(1)β(1) 1s(1)β(1)

1s(2)α(2) 1s(2)β(2) 1s(2)β(2)

1s(3)α(3) 1s(3)β(3) 1s(3)β(3)

∣∣∣∣∣∣∣∣
= 1s(1)α(1)

∣∣∣∣∣∣1s(2)β(2) 1s(2)β(2)

1s(3)β(3) 1s(3)β(3)

∣∣∣∣∣∣
− 1s(1)β(1)

∣∣∣∣∣∣1s(2)α(2) 1s(2)β(2)

1s(3)α(3) 1s(3)β(3)

∣∣∣∣∣∣
+ 1s(1)β(1)

∣∣∣∣∣∣1s(2)α(2) 1s(2)β(2)

1s(3)α(3) 1s(3)β(3)

∣∣∣∣∣∣
= 0
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the Slater determinant
Li atom

if two rows are interchanged - the determinant changes sign
antisymmetric wavefunction

1st row expansion

ΦLi =

∣∣∣∣∣∣∣∣
1s(1)α(1) 1s(1)β(1) 2s(1)α(1)

1s(2)α(2) 1s(2)β(2) 2s(2)α(2)

1s(3)α(3) 1s(3)β(3) 2s(3)α(3)

∣∣∣∣∣∣∣∣
= 1s(1)α(1)

∣∣∣∣∣∣1s(2)β(2) 2s(2)α(2)

1s(3)β(3) 2s(3)α(3)

∣∣∣∣∣∣
− 1s(1)β(1)

∣∣∣∣∣∣1s(2)α(2) 2s(2)α(2)

1s(3)α(3) 2s(3)α(3)

∣∣∣∣∣∣
+ 2s(1)α(1)

∣∣∣∣∣∣1s(2)α(2) 1s(2)β(2)

1s(3)α(3) 1s(3)β(3)

∣∣∣∣∣∣

2nd row expansion

Φ1→2
Li =

∣∣∣∣∣∣∣∣
1s(2)α(2) 1s(2)β(2) 2s(2)α(2)

1s(1)α(1) 1s(1)β(1) 2s(1)α(1)

1s(3)α(3) 1s(3)β(3) 2s(3)α(3)

∣∣∣∣∣∣∣∣
= −1s(1)α(1)

∣∣∣∣∣∣1s(2)β(2) 2s(2)α(2)

1s(3)β(3) 2s(3)α(3)

∣∣∣∣∣∣
+ 1s(1)β(1)

∣∣∣∣∣∣1s(2)α(2) 2s(2)α(2)

1s(3)α(3) 2s(3)α(3)

∣∣∣∣∣∣
− 2s(1)α(1)

∣∣∣∣∣∣1s(2)α(2) 1s(2)β(2)

1s(3)α(3) 1s(3)β(3)

∣∣∣∣∣∣
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the Slater determinant
General properties

The electrons are indistinguishable...

The individual one-particle orbitals have no physical meaning:

the Slater determinant is invariant with respect to any

orthogonality and scalar product keeping linear combination of

the original orbitals.
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Electronic structure of atoms
Hamiltonian

Ĥ = −
N∑
i

1
2
∇2

i −
N∑
i

ZA

RiA
+

N∑
i

N∑
j>i

1
rij

+ ∆Hso

Energy of atoms is basically n dependent, moderate dependents on L, S

values and slightly dependents on J value (light atoms).

Spherical symmetry =⇒ Ĵ2 and Ĵz commute with the Hamiltonian: J and

MJ are good quantum numbers.

Without ∆Hso the L, ML, S , MS are also good quantum numbers
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Electronic structure of atoms
Aufbau/building-up principle, diagonal rule

orbitals with a lower n + ` value are filled before those

with higher n + ` values

in the case of equal n + ` values, the orbital with a

lower n value is filled first

Examples: He, Li, C, N, O

〈r3d 〉 < 〈r4s〉 =⇒: For the 3d electrons the e-e repulsion is

so strong that in most of the cases the 4s orbitals are

prefered: Sc, [Ar] 3d14s2

There are exceptions too: Cu, 1s22s22p63s23p64s23d9 is

predicted instead of 1s22s22p63s23p64s13d10

Due to the e-e interaction the shell-, sub-shell configuration can not describe the

atomic spectra (see the case of the He atom: 1s12s1 configuration describes two

states [a singlet and a triplet state] with different energies.)
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Electronic structure of atoms
Atomic term symbols, vector and scalar,z-projection, additions

total orbital angular quantum number

L̂ = (L̂x , L̂y , L̂z ), ˆ̀
i = (ˆ̀

xi , ˆ̀
yi , ˆ̀

zi )

L̂ =
∑ ˆ̀

i and ML =
∑

m`i , ML = 0,±1,±2, . . . ,±L
L= 0 1 2 3 4

S P D F G

total spin angular momentum quantum number

Ŝ =
∑

ŝi or MS =
∑

msi , MS = 0,±1,±2, . . . ,±S

total angular quantum number

Ĵ = L̂ + Ŝ, MJ = 0,±1,±2, . . . ,±J
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Electronic structure of atoms
Atomic term symbols, Clebsch-Gordan series

total orbital angular quantum number

L = `1 + `2, `1 + `2 − 1, ..., |`1 − `2|

total spin angular momentum quantum number

S = s1 + s2, s1 + s2 − 1, ..., |s1 − s2|

max{ML} = L and max{MS} = S ; (2L + 1)(2S + 1) =
∑

J 2J + 1

Ĵ2, Ĵz eigenfunctions ΨJ
mJ

can be mixed from the L̂2, L̂z , Ŝ2, Ŝz

eigenfunctions 2S+1ΨL
ms mL

,

ΨJ
mJ =mL+mS

=
mS =mJ−mL∑

mL

C J,mJ

LS,mL
· 2S+1ΨL

ms mL
(C J,mJ

LS,mL
: CG coeffs)

total angular quantum number

J = L + S , L + S − 1, ..., |L− S |
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Electronic structure of atoms
Atomic term symbols

atomic term symbol: 2S+1LJ

term: 2S+1L

microstate: a unique configuration of quantum numbers

n = num of spin orbitals; k = num. of electrons

number of microstates:
(n

k

)
multiplicity: 2S + 1

S= 0 1/2 1 3/2

2S+1= 1 2 3 4

singlet doublet triplet quartet

210



Electronic structure of atoms
H electronic transitions, 2S1/2, 2P1/2, 2P3/2, 2D5/2, 2D3/2, etc.
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Electronic structure of atoms
Atomic term symbols, helium atom
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Electronic structure of atoms
Atomic term symbols, 2S+1LJ

1s2: 1S0

2p6: 1S0

3d10: 1S0

1s1: 2S1/2

1s22s22p1, i.e. [Ne]2p1: 2P3/2,
2P1/2

atoms with closed subshells are in

the 1S0 state

atoms with one e− in an open

subshell n` are in the 2L state

In general, the open subshells

define the atomic term
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Electronic structure of atoms
Atomic term symbols, non-relativistic case, LS / Russel-Saunders coupling

In the non-relativistic case 2S+1L defines the energy.

The relativistic effects (e.g., spin-orbit coupling) are small perturbations.

The spin-orbit coupling for the individual electrons is small. An average

can be calculated using the total L̂ and Ŝ operators: ∆Ĥso = A(L, S)L̂ · Ŝ.

The energy leveles are splitted according to the various values of J:

∆Eso = 1
2A(L, S)(J(J + 1)− L(L + 1)− S(S + 1))

As in a given term the L and S are constant (and ∆J = 1) the observable

splitting is E(J)− E(J − 1) = A(L, S)J.

=⇒ Fine or multiplett structure of the spectra
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Electronic structure of atoms
Atomic term symbols, 2S+1LJ , spin-orbit coupling
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Electronic structure of atoms
Relativistic case, jj-coupling

In the relativistic case (Z»1) the spin-orbit effect dominates

over the e−-e− repulsion, thus
∑

i<j
1
rij

can be considered as a

perturbation.

Ĥso =
∑

i αi
ˆ̀
i ŝi =

∑
i
αi
2 (ĵ2i − `2i − s2i ).

Spin and orbital momenta of the electrons coupled into ĵi

eigenfunctions. The anti-symmetrized products of these

functions are the eigenfunctions of the zero-order Hamiltionian

(Ĥ without the e−-e− repulsion).

∆Eso =
∑

i
αi
2 (ji (ji + 1)− `i (`i + 1)− si (si + 1)).

The good quantum numbers are J, j1, j2, etc.
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Electronic structure of atoms
LS- and jj-coupling

Coupling of `=1 and s=1/2 results in

either a j=1/2 or a j=3/2 state.

Possible J values:

j1 j2 J

1/2 1/2 0, 1

1/2 3/2 1, 2

3/2 3/2 0, 1, 2, 3
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Electronic structure of atoms
Hund’s rules

an atom in its ground state adopts a configuration with the

greatest number of unpaired electrons
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Electronic structure of atoms
Hund’s rules

Rules to determine the lowest state for a given electron configuration

the term of highest S (maximum multiplicity, 2S + 1) will lie lowest in

energy

if more than one term exist with maximum multiplicity then the term

having the highest L will lie lowest in energy

for terms having a spin-orbit splitting, if the outermost subshell is half-full

or less than half-full the states will be ordered with the lowest J values

lying lowest; if the outermost subshell is more than half-filled, the level

with the highest value of J, is lowest in energy
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Electronic structure of atoms
Selection rules for electronic transitions

transition dipole moment:

µ̂ = −e
∑

electrons

r̂

µfi =

∫
ψf µ̂ψidτ

one electron

∆s = 0

∆` = ±1; ∆m` = 0,±1

multi electron

∆S = 0

∆L = 0,±1

∆J = ±1, 0, J = 0 = J = 0
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Atomic term symbols

2S+1LJ

any atomic state can be specified

any spectroscopic transition can be described

221



Atomic spectroscopy

Purpose: analysis of the elementary composition.

Sample preparation: heating to high temperature.

Atomic absorption spectroscopy and atomic emission spectroscopy

Concentration of atoms can be measured (Beer–Lambert law[see

later]/intensities)
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Atomic spectroscopy

Composition of stars

Relative speed and temperature of stars and galaxies.
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Born–Oppenheimer approximation
argument: elephant herd and the flies

electrons

light particles

fast

nuclei

heavy particles

slow
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Born–Oppenheimer approximation
Hamiltonians, ĤΨ = EΨ

Ĥ = −1
2
∇2

e −
1
r
, fixed nucleus, one electron atom

Ĥ = −1
2
∇2

e −
1

2Mp
∇2

p −
1
Rep

, one electron atom

Ĥ = −
N∑
i

1
2
∇2

i −
1

2MA
∇2

A −
N∑
i

ZA

RiA
+

N∑
i

N∑
j>i

1
rij
, multielectron atom

polyatomic molecule, general case:

Ĥ = −
N∑
i

1
2
∇2

i −
M∑
A

1
2MA

∇2
A −

N∑
i

M∑
A

ZA

RiA
+

N∑
i

N∑
j>i

1
rij

+
M∑
A

M∑
B>A

ZAZB

RAB

”Ekin(electrons) + Ekin(nuclei) + Epot(el.,nuc.) + Epot(el, el) + Epot(nuc, nuc)”
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Born–Oppenheimer approximation
Hamiltonians, Ĥ = Ĥe + ĤN

Ĥ = −
N∑
i

1
2
∇2

i −
M∑
A

1
2MA

∇2
A −

N∑
i

M∑
A

ZA

RiA
+

N∑
i

N∑
j>i

1
rij

+
M∑
A

M∑
B>A

ZAZB

RAB

Ĥe = −
N∑
i

1
2
∇2

i −
N∑
i

M∑
A

ZA

RiA
+

N∑
i

N∑
j>i

1
rij

The electronic Hamiltonian Ĥe can be approximated by an average,

〈Ψe

∣∣∣Ĥe

∣∣∣Ψe〉 = Ee ({RA}), where Ψe is the eigenfunction of the electronic

Hamiltonian.

ĤN = −
M∑
A

1
2MA

∇2
A +

〈
Ψe

∣∣∣Ĥe

∣∣∣Ψe

〉
+

M∑
A

M∑
B>A

ZAZB

RAB

= −
M∑
A

1
2MA

∇2
A + ETOT
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Born–Oppenheimer approximation
Hamiltonians, Ĥ = Ĥe + ĤN

ETOT = Ee ({RA}) +
M∑
A

M∑
B>A

ZAZB

RAB

ĤN ΨN = EΨN

ETOT is the potential energy surface governing the motion of the nuclei.

E is the Born–Oppenheimer approximation to the total energy including the

translational, rotational, vibrational, and electronic energy.

When solving for the electronic WF, Ĥe Ψe ({ri}, {RA}) = EΨe ({ri}, {RA}):

kinetic energy of the nuclei is zero, −
∑M

A
1

2MA
∇2

A = 0, and

nuclei-nuclei potential energy is constant,
∑M

A

∑M
B>A

ZAZB
RAB

= const
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The variational principle
assumptions

ground state: Ψ0, E0 =
∫

Ψ∗0ĤΨ0dτ

set of orthonormal eigenfunctions is available, Ĥψi = εiψi and
∫
ψ∗i ψj = δij

εi ≥ E0

the trial wavefunction is constructed as Ψ =
∑

i ciψi

variational principle

the energy obtained with the trial wavefunction, Ψ, is always an upper bound to the

ground state energy, E0, i.e., E =
∫

Ψ∗ĤΨdτ∫
Ψ∗Ψdτ

≥ E0
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The variational principle
proof

E =

∫
Ψ∗ĤΨdτ∫
Ψ∗Ψdτ

=

∫ ∑
i

c∗i ψ
∗
i Ĥ
∑

j

cjψj dτ∫ ∑
i

c∗i ψ
∗
i

∑
j

cjψj dτ

=

∑
ij

c∗i cj

∫
ψ∗i Ĥψj dτ

∑
ij

c∗i cj

∫
ψ∗i ψj dτ

=

∑
ij

c∗i cj

∫
ψ∗i εjψj dτ

∑
ij

c∗i cj

∫
ψ∗i ψj dτ

=

∑
i c2i εi∑

i c2i
≥
∑

i c2i E0∑
i c2i

= E0
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The variational principle
The variational method

Supposing to have an anzats for the wavefunction with some

parameters c1, c2, . . . , Ψ = Ψ(c1, c2, c3, . . . ), then the energy can

be approximated by the ’expectation value’:

E (c1, c2, . . . ) =
〈Ψ(c1,c2,... )|Ĥ|Ψ(c1,c2,... )〉
〈Ψ(c1,c2,... )|Ψ(c1,c2,... )〉 =

∫
Ψ∗(c1,c2,... )ĤΨ(c1,c2,... )dτ∫
Ψ∗(c1,c2,... )Ψ(c1,c2,... )dτ

One can think that the parameter set minimizing the energy

E (c1, c2, . . . ) is the optimal choice. =⇒

∂E(c1,c2,... )
∂ci

= 0, ∀i
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The variational principle
The variational method, linear parametrization

For the sake of simplicity it is assumed that functions φi , i = 1, . . . are orthogonal to

each other.

The optimal wavefunction can be approximated in a linear form, Ψ =
∑

i ciψi .

E =

∫
Ψ∗ĤΨdτ∫
Ψ∗Ψdτ

=

∑
i

∑
j c∗i cj

∫
ψ∗i Ĥψj dτ∑

i

∑
j c∗i cj

∫
ψ∗i ψj dτ

=

∑
i

∑
j c∗i cj 〈ψi |Ĥ|ψj 〉∑

i c2i

Using the condition of the minima, ∂E
∂ck

= 0, an eigenvalue equation can be derived:

∑
l

〈ψk |Ĥ|ψl 〉cl = Eck

In vector notation : Hc = Ec
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The variational principle
The variational method, optimal determinant wavefunction

In the theoretical calculations the one-electron molecular orbitals, φk are chosen

as the linear combination of atomic orbitals (LCAO), χµ: φk =
∑
µ ckµχµ.

In the simplest approximation the wavefunction is a Slater determinant

(anti-symmetrized product) composed from a set of LCAO’s:

Ψdet (r1, r2, . . . , rN) = 1√
N!

Â(φ1(r1)φ2(r2) . . . φN(rN))

The optimal ckµ molecular orbital coefficients are obtained from the variational

principle. =⇒

Hartree-Fock equations: F̂φi = εiφi , where F̂ is a one-electron operator,

F̂ = ĥ + V̂eff(φ1, φ2, . . . φN ) and εi is (some kind of) energy of the molecular

orbital. Mean field approximation: the e-e interaction is described by a single

averaged effective potential, V̂eff, which depends on the molecular orbitals

φ1, φ2, . . . φN .

Pseudo-eigenvalue problem (F̂ depends on the molecular orbitals φi ), =⇒

iterative solution.
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The variational principle
The variational method, Configuration interaction

The determinant wavefunction is not exact.

Better approximation: linear combination of determinants.

Hartree-Fock calculation =⇒ occupied and virtual orbitals =⇒ ground state,

Ψ0
det , and excited determinants, Ψ1

det ,Ψ
2
det , . . . .

Configuration interaction wavefunction: ΨCI =
∑

i=0 ci Ψ
i
det

ci coefficients can be calcuated from the variational principle.

Corrections with respect to the mean field approximation, electron correlation.

233



The effect of temperature, Boltzmann distribution
Mathematical background, conditional extremum

Condition of the extrama at x0 of f (x) = f (x1, x2, . . . , xn):
∂f
∂x1

∣∣∣
x=x0

= 0, ∂f
∂x2

∣∣∣
x=x0

= 0, . . . , ∂f
∂xn

∣∣∣
x=x0

= 0

Where are the extrama of f (x) if x1, x2, . . . are not independent,

but connected by the g1(x) = 0, g2(x) = 0,. . . ,gm(x) = 0

conditions?

Example: f (x , y) = x + y and g(x , y) = x2 + y2 − 1 = 0
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The effect of temperature, Boltzmann distribution
Mathematical background, conditional extremum

Lagrange multiplication method: a new function is introduced:

Λ(x, λ1, λ2, . . . , λm) = f (x)− λ1g1(x)− λ2g2(x) · · · − λmgm(x)

The necessary condition of the conditional extremum at x0:
∂Λ
∂x1

∣∣∣
x=x0,λ=λ0

= 0, ∂Λ
∂x2

∣∣∣
x=x0,λ=λ0

= 0, . . . , ∂Λ
∂xn

∣∣∣
x=x0,λ=λ0

= 0

and
∂Λ
∂λ1

∣∣∣
x=x0,λ=λ0

= 0, ∂Λ
∂λ2

∣∣∣
x=x0,λ=λ0

= 0, . . . , ∂Λ
∂λm

∣∣∣
x=x0,λ=λ0

= 0

Equations in the above line are identical with the constains:

gi (x) = 0 for ∀i =⇒ f (x0) = Λ(x0, λ0) .

235



The effect of temperature, Boltzmann distribution
Mathematical background, conditional extremum

In our example: Λ(x , y , λ) = x + y − λ(x2 + y2 − 1)

∂Λ
∂x = 1 + 2λx = 0, ∂Λ

∂y = 1 + 2λy = 0 ⇒ x = − 1
2λ , y = − 1

2λ

Substituting these into the condition:

1 = x2 + y2 = 2 1
4λ2 ⇒ x = y = ± 1√

2
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The effect of temperature, Boltzmann distribution
Mathematical background, Stirling’s formula

Let’s suppose that N is a large integer.

ln(N!) =
N∑

i=1

ln(i) ≈
∫ N

1
ln(x)dx = [x ln(x)− x ]N1

ln(N!) ≈ N lnN − N
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The effect of temperature, Boltzmann distribution
Energy levels and populations

We will suppose that our system contains N particles distributed on

energy levels ε0 = 0, ε1, ε2, . . . with populations n0, n1, n2, n3, . . . .

Internal energy:

U = U0 +
∑
i=0

niεi
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The effect of temperature, Boltzmann distribution
Thermodynamic probability

The number of individual distributions belonging to the given

n0, n1, n2, n3, . . . popluations are called the thermodynamic

probability,

W = N!
n0!n1!n2!n3!... .

Number of combinations with repetition.

Hypothesis: If N and ni numbers are large (thermodynamic limit),

the observed macroscopic state is defined by the W with the

maximal value.
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The effect of temperature, Boltzmann distribution
Extremum of the thermodynamic probability

As the ln(x) function is a monotonically increasing function, the

extremum of W and ln(W ) defines the same set of populations.

We have two constrains to take into account:
∑

i ni = N = const.

and
∑

i εini = E = const. (isolated system)

Using the Lagrange multiplication method:

Λ(n0, n1, n2, . . . , α, β) =

ln(W (n0, n1, n2, . . . ))− β

(∑
i=0

εini − E

)
+ α

(∑
i=0

ni − N

)

240



The effect of temperature, Boltzmann distribution
Extremum of the thermodynamic probability

Necessary condition for the maximum: ∂Λ
∂ni

= 0 for each ni .

∂ ln(W )
∂ni

− βεi + α = 0

ln(W ) = ln(N!)−
∑

i=0 ln(ni !) ≈

N ln(N)− N −
∑

i (ni ln(ni )− ni ) = N ln(N)−
∑

i ni ln(ni )

∂ ln(W )
∂ni

≈ − ln(ni ), where ni >> 1

ni = eα−βεi∑
i

ni = eα
∑

i

e−βεi = N =⇒ eα =
N∑

i e
−βεi

=
N

q

q is the partition function: q =
∑

i e
−βεi
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The effect of temperature, Boltzmann distribution
Thermodynamic average

Boltzmann distribution:

ni =
Ne−βεi

q

E =
∑

i

εini = N

∑
i

εie
−βεi

q

To find the β parameter these results should be applied to the ideal

gas (see Atkins, ...) : E = N
β , p = N

Vβ =⇒ β = 1
kT

where p is the pressure. Compering this results with the equation

of states for the ideal gas, we can see that β = 1
kT .
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The effect of temperature, Boltzmann distribution
Partition function

T → 0K , β →∞, (ε0 = 0) =⇒ q =
∑

i e
−βεi = 1,

n0 = N e−ε0β

1 = N

ni = N e−εiβ

1 = 0, where i 6= 0

T →∞K , β → 0, supposing that the system has only two

states, q =
∑

i e
−βεi = 2,

ε0 = 0 and ε1 > 0 =⇒ n0 = n1 = N/2 .

In general, the value of the partition function gives the number

of states available for the system.
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The effect of temperature, Boltzmann distribution
Partition function, separation of the degrees of freedom

The energy of a molecule can be approximetly divided into

more or less independent contributions: translation, rotation,

vibration, electronic excitation, etc.,

εK = εtr
i + εrot

j + εvib
k + εel

l .

Partition function:

q =
∑

K

e−βεK =
∑

i ,j ,k,l

e−β(εi +εj +εk +εl ) = qtrqrotqvibqel

Typical values for the partition functions (room temeperature,

1 mol gas): qel = 1, qvib = 1.001, qrot = 10, qtr = 106
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Molecular symmetry

molecular symmetry operation: the initial and final states are

indistinguishable

physical properties are invariant with respect to symmetry operations

for every operation there exists a corresponding symmetry element

245



Molecular symmetry

molecular symmetry operation: the initial and final states are

indistinguishable

symmetry operations

reflection

rotation

inversion

symmetry elements

plane

axis

center

one symmetry element can generate more than one operation

for example: clockwise, anticlockwise rotation
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Molecular symmetry

group

set of elements (e.g., a, b, c , . . . ) together with a binary operation

(multiplication)

four conditions: (i) one of the elements is the identity(aI = a), (ii) associativity of

multipication(a (bc) = (ab) c), (iii) each elemenet has an inverse (for any a there is a

b for which ab = I ), (iv) closure(if a and b are elements of the set than ab is also in

the set)

examples:

the set of integers with addition (identity element?)

the set {1, i ,−1,−i} with ordinary multiplication

the set of matrices


1 0

0 1

 ,

 0 1

−1 0

 ,

−1 0

0 −1

 ,

0 −1

1 0

 with

matrix multiplication
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Molecular symmetry

group
set of elements together with a binary operation

the set {1, i ,−1,−i} with ordinary multiplication

identity element, E , is the number 1

associativity: a(bc) = (ab)c

inverse and closure → group table

1 i -1 -i

1 1 i -1 -i

i i -1 -i 1

-1 -1 -i 1 i

-i -i 1 i -1

↔

1 i -1 -i

1 1 i -1 -i

-i -i 1 i -1

-1 -1 -i 1 i

i i -1 -i 1

↔

E A B C

E E A B C

C C E A B

B B C E A

A A B C E
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Molecular symmetry

group
set of elements together with a binary operation

the set of matrices


1 0

0 1

 ,
 0 1

−1 0

 ,
−1 0

0 −1

 ,
0 −1

1 0

 with matrix multiplication

identity element, E =

1 0

0 1


associativity: A(BC) = (AB)C

inverse and closure → Cayley/group table, A=

 0 1

−1 0

, B=

−1 0

0 −1

, C=

0 −1

1 0



E A B C

E E A B C

C C E A B

B B C E A

A A B C E

CA =

0 −1

1 0

 0 1

−1 0

 =

1 0

0 1


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Molecular symmetry

group
set of elements together with a binary operation

the sets {1, i,−1,−i} and


1 0

0 1

 ,
 0 1

−1 0

 ,
−1 0

0 −1

 ,
0 −1

1 0

 are different

representations of the same group (C2v , see later ...)

E A B C

E E A B C

C C E A B

B B C E A

A A B C E
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Molecular symmetry

group
set of elements together with a binary operation

point group

the center of mass is invariant for the operations, i.e., the symmetry elements

have a common point

elements of the point group are the symmetry operations (not the symmerty

elements)

binary operation is the successive application of two symmetry operations;

PQ → first Q then P
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Molecular symmetry

symmetry operations
1 identity

2 rotation

3 reflection

4 inversion

5 improper rotation

symmetry tutorial website
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Molecular symmetry
rotation

Cn denotes the n-fold axis of symmetry

the rotational angle, α, is 360◦/n or n = 360◦/α

more than one rotational axis ⇒ greatest Cn is called the principal

axis
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Molecular symmetry
reflection

σ denotes the mirror plane

vertical, σv , parallel to the principal axis (vertical planes

bisects as many atoms as possible)

horizontal, σh, perpendicular to the principal axis

dihedral, σd , vertical and bisects two C2 axes (dihedral planes

are such planes, which bisects as many bonds as possible)
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Molecular symmetry
H2O, σv
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Molecular symmetry
benzene, σv , σh, and σd

σh: red

σv : brown

σd : yellow
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Molecular symmetry
inversion, improper rotation

i denotes the center of symmetry

Sn denotes the n-fold improper axis of symmetry

Sn - two successive transformation:

rotation by 360◦/n

reflection through a perpendicular plane

note that S2=i and S1=σ
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Molecular symmetry
hydrogen peroxide, S2 = i
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Molecular symmetry
Staggered ethane, S6
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Molecular symmetry
flowchart of point groups

examples
H2O

C6H6

NH3
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Molecular symmetry

applications

chiral molecules: Sn is absent (non-superimposable on its mirror

image)

polar molecules: Cn, Cnv , and Cs (dipole moment)
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Molecular symmetry
the C2v group multiplication table

E C2 σv σ
′
v

E E C2 σv σ
′
v

C2 C2 E σ
′
v σv

σv σv σ
′
v E C2

σ
′
v σ

′
v σv C2 E
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Molecular symmetry
matrix representation of the C2v group

E


pO

x

p
H1
x

p
H2
x

 =


1 0 0

0 1 0

0 0 1




pO
x

p
H1
x

p
H2
x

 =


pO

x

p
H1
x

p
H2
x



C2


pO

x

p
H1
x

p
H2
x

 =


−1 0 0

0 0 −1

0 −1 0




pO
x

p
H1
x

p
H2
x

 =


−pO

x

−p
H2
x

−p
H1
x



σv


pO

x

p
H1
x

p
H2
x

 =


1 0 0

0 0 1

0 1 0




pO
x

p
H1
x

p
H2
x

 =


pO

x

p
H2
x

p
H1
x



σ
′
v


pO

x

p
H1
x

p
H2
x

 =


−1 0 0

0 −1 0

0 0 −1




pO
x

p
H1
x

p
H2
x

 =


−pO

x

−p
H1
x

−p
H2
x



The pO
x , p

H1
x , and p

H2
x orbitals define a representation

of the C2v group.
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Molecular symmetry
matrix representation of the C2v group

E C2 σv σ
′
v

E E C2 σv σ
′
v

C2 C2 E σ
′
v σv

σv σv σ
′
v E C2

σ
′
v σ

′
v σv C2 E

C2 =


−1 0 0

0 0 −1

0 −1 0



σv =


1 0 0

0 0 1

0 1 0



σ
′
v =


−1 0 0

0 −1 0

0 0 −1



σvσ
′
v = C2 ↔


1 0 0

0 0 1

0 1 0



−1 0 0

0 −1 0

0 0 −1


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Molecular symmetry
matrix representation of the C2v group

E =


1 0 0

0 1 0

0 0 1

 C2 =


−1 0 0

0 0 −1

0 −1 0



σv =


1 0 0

0 0 1

0 1 0

 σ
′
v =


−1 0 0

0 −1 0

0 0 −1



BD =


•

• •

• •

 block diagonal matrix

pO
x does not mix with pH1

x or pH2
x
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Molecular symmetry
reducible representations

Γ(3) =


1 0 0

0 1 0

0 0 1



−1 0 0

0 0 −1

0 −1 0




1 0 0

0 0 1

0 1 0



−1 0 0

0 −1 0

0 0 −1


Γ(1) = 1 −1 1 −1

Γ(2) =

 1 0

0 1

  0 −1

−1 0

  0 1

1 0

  −1 0

0 −1



Γ(3) = Γ(1) ⊕ Γ(2)

Γ(3) - a 3-dimensional reducible representation

Γ(1) - a 1-dimensional irreducible representation

Γ(2) - a 2-dimensional (reducible) representation
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Molecular symmetry
how to reduce Γ(2) further

pH1
x and pH2

x are degenerate orbitals let’s try their linear combinations

p+ = pH1
x + pH2

x

p− = pH1
x − pH2

x

E

 p+

p−

 =

1 0

0 1

 p+

p−

 =

 p+

p−

 C2

 p+

p−

 =

−1 0

0 1

 p+

p−

 =

−p+

p−


σv

 p+

p−

 =

1 0

0 −1

 p+

p−

 =

 p+

−p−

 σ
′
v

 p+

p−

 =

−1 0

0 −1

 p+

p−

 =

−p+

−p−


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Molecular symmetry
reducible representations

Γ(3) =


1 0 0

0 1 0

0 0 1



−1 0 0

0 0 −1

0 −1 0




1 0 0

0 0 1

0 1 0



−1 0 0

0 −1 0

0 0 −1


Γ(1) = 1 −1 1 −1

Γ(2) =

 1 0

0 1

  0 −1

−1 0

  0 1

1 0

  −1 0

0 −1



Γ(2) =

 1 0

0 1

  −1 0

0 1

  1 0

0 −1

  −1 0

0 −1


Γ(1) = 1 −1 1 −1

Γ′(1) = 1 1 −1 −1

Γ(3) = 2Γ(1) ⊕ Γ′(1)
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Molecular symmetry
irreducible and reducible representations



a11 a12 . . . a1n−1 a1n

a21 a22 . . . a2n−1 a2n

. . .
... aii

...
. . .

an−11 an−12 . . . an−1n−1 an−1n

an1 an2 . . . ann−1 ann



character:

trace of the matrix,

tra =
∑

i aii

characters do not depend on

the form of representation:

the matrices defined by pH1
x

and pH2
x have the same

characters than the ones

defined by p+ and p−.
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Molecular symmetry
character tables, irreducible representations, symmetry operations

Character tables: collection of the possible transformation

properties of wave functions under symmetry operations

C2v E C2 σv σ
′
v lin., rot. quad.

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy

B1 1 −1 1 −1 x, Ry xz

B2 1 −1 −1 1 y, Rx yz

Γ(3) 3 −1 1 −3

A1 is the so-called totally symmetric representation.

E =


1 0 0

0 1 0

0 0 1



C2 =


−1 0 0

0 0 −1

0 −1 0



σv =


1 0 0

0 0 1

0 1 0



σ
′
v =


−1 0 0

0 −1 0

0 0 −1


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Molecular symmetry
Class

Symmetry operations fall into the same class if they are of the

same type (for example, rotations) and can be transformed

into one another by a symmetry operation of the group: a and

b are in the same class if there is a group element c for which

cac−1 = b.

Number of irreducible representations = number of classes

The value of character is uniform in a class.
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Molecular symmetry
irreducible and reducible representations, reduction formula

ni =
1
h

∑
classes

gcχirrχred

ni number of times the irreducible representation occurs

h order of the group

gc number of operations in the class

χirr character of the irreducible representation

χred character of the reducible representation
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Molecular symmetry
the C2v group character table

C2v E C2 σv σ
′
v lin., rot. quad.

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy

B1 1 −1 1 −1 x, Ry xz

B2 1 −1 −1 1 y, Rx yz

Γ(3) 3 −1 1 −3

⇒ Γ(3) = A2 ⊕ 2B1

NA1 =
1
4
{1 · 1 · 3 + 1 · 1 · (−1) + 1 · 1 · 1 + 1 · 1 · (−3)} = 0

NA2 =
1
4
{1 · 1 · 3 + 1 · 1 · (−1) + 1 · (−1) · 1 + 1 · (−1) · (−3)} = 1

NB1 =
1
4
{1 · 1 · 3 + 1 · (−1) · (−1) + 1 · 1 · 1 + 1 · (−1) · (−3)} = 2

NB2 =
1
4
{1 · 1 · 3 + 1 · (−1) · (−1) + 1 · (−1) · 1 + 1 · 1 · (−3)} = 0
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Molecular symmetry
Two molecular orbitals of formaldehyde

E C2 σxz σyz irrep.

(b) +1 +1 +1 +1 A1

(c) +1 -1 +1 -1 B1
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Molecular symmetry
Assignment of translations and rotations

E C2 σxz σyz irrep.

Tz +1 +1 +1 +1 A1

Ty +1 -1 -1 +1 B2

Tx +1 -1 +1 -1 B1

Rotations can be assigned similarly:

E C2 σxz σyz irrep.

Rx +1 -1 -1 +1 B2

Ry +1 -1 +1 -1 B1

Rz +1 +1 -1 -1 A2
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Molecular symmetry
character tables
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Molecular symmetry
irreducible and reducible representations

E.g., eclipsed ethane.
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Molecular symmetry
Vanishing integrals

Let’s suppose we have two functions describing some properties of a molecule, f1 and

f2 (e.g., two molecular orbitals). The value of integral I =
∫

f1f2dτ can be non-zero

only if integrand f1f2 must have symmetry species A1. "If the integrand changed sign

under a symmetry operation, the integral would be the sum of equal and opposite

contributions, and hence would be zero. (Atkins book)"

E.g., f1 = ψ(b) and f2 = ψ(c) (see page 274).

E C2 σxz σyz irrep.

ψ(b) +1 +1 +1 +1 A1

ψ(c) +1 -1 +1 -1 B1

ψ(b)ψ(c) +1 -1 +1 -1 B1

As the ψ(b)ψ(c) transforms as B1 than the I =
∫
ψ(b)ψ(c)dτ = 0.
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Molecular symmetry
Vanishing integrals, dipol moment

µ =
∫
ρ(r)rdr3

Here ρ(r) is the charge density of the molecule. It is a totally

symmetric quantity (transforms as A1). To have a non-vanishing

integral, r(x , y , z) must contain a component which also transforms

as A1. (See the character tables!)
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Optical spectroscopy
general remarks

Optical spectroscopy: from microwave to ultraviolet
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Optical spectroscopy
general remarks

Theoretical background: molecular Schrödinger equation

Separate treatment of the electonic and nuclei motions:

Born-Oppenheimer approximation

Molecular degrees of freedom: electronic(UV-visible sp.),

vibrational(IR sp.), rotational(microwave sp.), and translational

281



Optical spectroscopy
general remarks

the origin of spectral lines is the interaction of electromagnetic

wave and matter

photon
absorption (hν absorbed by the molecule: low → high)

emission (hν emitted by the (molecule: high → low)

scattering elastic (Rayleigh), inelastic (Stokes, anti-Stokes)
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Optical spectroscopy
general remarks

atomic spectroscopy - electronic transitions

rotation

vibration (accompanied by rotational lines)

electronic (accompanied by rotational and vibrational lines)
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Optical spectroscopy
Units for the absorbed light

UV-visible spectra:

the wavelength of the absorbed light (λ, in nm [typical range:

200 nm - 1000 nm])

Infrared spectra:

the wavenumber of the absorbed light

(ν∗, in cm−1 [in the order of 100 - 1000 cm−1])

Microwave spectra:

frequency of the absorbed light

(ν = c
λ , in MHz or GHz)
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Optical spectroscopy
general remarks

The observed spectra do not consist of discrete lines rather are continuous functions,

I (λ), where I is the intensity as a function of wavelength.

285



Optical spectroscopy
Quantities characterizing the intensity

dI = −κcIdx, where κ is proportional to the molar

absorption(see later) and c is the molar concentartion.
dI
I

= −κcdx∫ I

I0

dI

I
= −κc

∫ L

0
dx

ln( I
I0

) = −κcL, where κ = ε ln 10

line intensities
transmittance: T = I/I0 transmitted/incident intensity

Beer-Lambert law: I = I010−εcL (ε - molar absorption coefficient)

absorbance: A = log10(I0/I ) (A = −log10T )

Beer-Lambert law with absorbance: A = εcL

The absorbance is proportional to the concentration!
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Optical spectroscopy
Quantities characterizing the spectral bands

The properties of the maximum are given as:

λmax , νmax , or ν∗max and the corresponding Amax , or εmax .

εmax is independent of the concentration!

The intensity of a spectral band is defined by the area under

the band:
∫ ν2
ν1
ε(ν)dν

The width of a band is characterized by its full width at half

maximum (FWHM):

∆λmax , ∆νmax , or ∆ν∗max is the distance between the spectral

points corresponding to Amax
2
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Optical spectroscopy
UV-visible spectrum of the “Nile Blue A” dye

solvent: acetonitrile, high absorbtion =⇒ dilute solution ( c = 10−5 mol/l)
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Optical spectroscopy
Interpretation of optical spectra

Schrödinger equation: ĤΨ(τ) = EΨ(τ)

Solutions: Ψ0(τ),Ψ1(τ),Ψ2(τ), . . . wave functions and the

corresponding E0,E1,E2, . . .

The positions of the maxima correspond to the differences of

eigenvalues derived from the Schrödinger equation.
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Optical spectroscopy
Interpretation of optical spectra

νmax is determined by the

difference of the energies of the

initial (m) and final (n) states:

En − Em = hνmn

The band intensity reflects the probability of absorption of a

photon.

The collision of a photon and a molecule in state m

Bimolecular reaction: Mm + hν → Mn
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Optical spectroscopy
Bimolecular reaction, rate equation

−dNm
dt = AmnNmρν

Nm : concentration of molecules in state m

ρν : concentration of photons

Amn : rate constant for the absorption

Amn interrelates the observed band intensities to wave functions Ψ

obtained from the Schrödinger equation

Relation to the intensity:
∫ ν2

ν1

ε(ν)dν =
8πNAh

2c4ν4mn

ln 10
Amn

c : speed of light
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Optical spectroscopy
transition moment

Relation to the wave functions:2

Amn ∝ |Rmn|2,

where |Rmn|2 is the square of the transition moment.

Rmn =
∫

Ψ∗m(τ)µ̂Ψn(τ)dτ , where the elementes of vector µ̂ has

componenets µx =
∑

i eixi , µy =
∑

i eiyi , and µz =
∑

i eizi .

2Amn = 2(2π)3c4ν4

(4πε0)3h
|Rmn|2
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Optical spectroscopy
Linewidth

In our model the following assumptions have been made:

the molecule is isolated from the other ones,

the coordinate system is fixed to the molecule, that is, the

motion of the molecule with respect to the environment is not

considered,

the lifetimes of the states are infinite (“stationary states”).
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Optical spectroscopy
Linewidth

The broadening of spectral lines can be traced back to the

following reasons:

1. Interaction of the molecules. The energy levels of molecules are

perturbed by other molecules located closely, thus the energy levels

broaden. This effect is not quantized. The linewidth is determined

by this effect in solids, liquids, and high-pressure gases.
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Optical spectroscopy
Linewidth

2. Doppler effect: the molecules are traveling with various velocities

and in various directions. The absorption frequency is modified by

their velocity relative to the detector

ν
′

= ν
(
1± v

c

)
The shape of the band reflects the (non-quantized) velocity

distribution of the molecules.

Equipartition theorem:

〈Ekin〉 = 1
2m〈v

2〉 = 3
2kBT =⇒ v ∝

√
kBT =⇒ δν ∝ ν

c

√
kBT =⇒

low temperature (FWHM decreases)
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Optical spectroscopy
Linewidth

3. Natural line broadening (Fourier-limit)

The finite lifetime of the molecular states limits the accuracy of the

observed energy levels.

Broadening of the initial state: τm∆Em ≥ h

Broadening of the final state: τn∆En ≥ h

Similar to the Heisenberg uncertainty principle.

low pressure =⇒ deactivation decreases =⇒ τ increases

It determines the minimal achievable linewidth!
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Rotational spectroscopy
Model: rigid rotor

It consists of point masses (the nuclei) and it is

a rotor (it rotates about its center of mass)

rigid (it is not deformed by centrifugal forces, that is, bond

distances and angles are constant)
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Rotational spectroscopy
Moment of inertia

moment of inertia: I =
∑

i mi r
2
i

ri is the distance to the rotation axis. (Not to the center of mass!)
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Rotational spectroscopy
Principal axes of inertia

a, b, c - Cartesian coordinate system fixed to the molecule

axis a: the moment of inertia has its minimum value about it

axis c: the moment of inertia has its maximum value about it

axis b: the third perpendicular axis

Ia ≤ Ib ≤ Ic

299



Rotational spectroscopy
Classification of rotors

principal axes of inertia: Ia < Ib < Ic

1 linear Ia = 0, Ib = Ic = I

2 spherical top Ia = Ib = Ic = I

3 symmetric top

prolate Ia = I‖, Ib = Ic = I⊥

oblate Ia = Ib = I⊥, Ic = I‖

4 asymmetric top Ia 6= Ib 6= Ic
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Rotational spectroscopy
Linear rotor: HCN
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Rotational spectroscopy
Prolate symmetric rotor: methyl iodide
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Rotational spectroscopy
Oblate symmetric rotor: benzene
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Rotational spectroscopy
Spherical rotor: methane
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Rotational spectroscopy
Spherical rotor: sulfur hexafluoride
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Rotational spectroscopy
Asymmetric rotor: formaldehyde
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Rotational spectroscopy
Asymmetric rotor: acrolein
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Rotational spectroscopy
Asymmetric rotor: pyrazine

308



Rotational spectroscopy
rotational spectroscopy, energy levels

recall the particle on the sphere problem:

classical → E =
1
2
mv2 =

1
2

(mrv)2

mr2 =
`2

2I

quantum → E` = `(`+ 1)
~2

2I
, ` = 0, 1, 2, . . . , m` ∈ [−`, `]

Ei =
1
2
Iiω

2
i =

J2i
2Ii

, i ∈ (a, b, c)

E =
∑

i

J2i
2Ii

, i ∈ (a, b, c)
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Rotational spectroscopy
rotational spectroscopy, energy levels

spherical tops: Ia = Ib = Ic = I

classical → E =
J2a + J2b + J2c

2I
=

J2

2I

quantum → EJ = J(J + 1)
~2

2I
, J = 0, 1, 2, . . .

rotational constant: B = 1
hc ×

~2
2I

F (J) =
EJ

hc
= BJ(J + 1), J = 0, 1, 2, . . .

ν̃ = F (J + 1)− F (J) = 2B(J + 1)
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Rotational spectroscopy
rotational spectroscopy, energy levels

symmetric tops: Ia = I‖, Ib = Ic = I⊥, I‖ is called the principal axis

classical → E =
J2

a

2I‖
+

J2
b + J2

c

2I⊥

J2 = J2
a + J2

b + J2
c

E =
J2

a

2I‖
+

J2 − J2
a

2I⊥
=

J2

2I⊥
+

{
1
2I‖
− 1

2I⊥

}
J2

a (prolate)

quantum → EJ,K = J(J + 1)
~2

2I⊥
+

{
~2

2I‖
− ~2

2I⊥

}
K 2

J = 0, 1, 2, . . . K = 0,±1,±2, . . . ,±J

F (J,K ) = BJ(J + 1) + (A− B)K 2 with B =
~

4πcI⊥
and A =

~
4πcI‖
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Rotational spectroscopy
rotational spectroscopy, energy levels

F (J,K ) = BJ(J + 1) + (A− B)K 2

B =
~

4πcI⊥
and A =

~
4πcI‖
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Rotational spectroscopy
rotation in the laboratory-fixed frame

In general, the total angular

momentum (J) can be oriented in

2J + 1 directions,

MJ = −J,−J + 1, . . . , J − 1, J.

MJ : magnetic quantum number.

The wave function depends on

quantum numbers: J,K , and MJ
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Rotational spectroscopy
rotational spectroscopy, energy levels

symmetric tops:

F (J,K) = BJ(J + 1) + (A− B)K 2

J = 0, 1, 2, . . . K = 0,±1,±2, . . . ,±J

linear rotors: K = 0 (classical: E =
J2

b
2Ib

+
J2

c
2Ic

= J2

2I
, where I = Ib = Ic )

F (J) = BJ(J + 1), J = 0, 1, 2, . . .

B =
~

4πcI

spherical tops: A = B

F (J) = BJ(J + 1), J = 0, 1, 2, . . .

B =
~

4πcI
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Rotational spectroscopy
rotational spectroscopy, energy levels

degeneracy of the levels

symmetric tops: 2(2J + 1), for K 6= 0, otherwise 2J + 1

(MJ = −J,−J + 1, . . . , J − 1, J)

F (J,K) = BJ(J + 1) + (A− B)K 2

linear rotor: 2J + 1

(MJ = −J,−J + 1, . . . , J − 1, J)

F (J) = BJ(J + 1), K = 0

spherical tops: (2J + 1)(2J + 1)

(MJ = −J,−J + 1, . . . , J, K = −J,−J + 1, . . . , J)

F (J) = BJ(J + 1), A = B
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Rotational spectroscopy
Linear rotor, selection rules

The molecule must have a permanent dipole moment 3 (Cn,

Cnv , Cs), µperm 6= 0. E.g., there is no observable rotation

spectra of the N2, O2, Cl2 moleculs, but CO, HCl, HCN

moleculs have rotational spectra.

∆J = ±1

∆E (J → J + 1) = hν = ~2
2I ((J + 1) (J + 2)− J (J + 1)) =

~2
I (J + 1) = 2B(J + 1)

3When the transition moment is evaluated for all possible relative

orientations of the molecule wrt the photon: |µJ,J+1|2 = | J+1
2J+1 |

2µperm
316



Rotational spectroscopy
Linear rotor, spectra

Smoothly increasing distances between the energy levels.

The spectrum is composed of equidistant lines.
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Rotational spectroscopy
Linear rotor, spectra

Absorption frequencies: equidistant lines.

Intensity: first increases, then decreases.
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Rotational spectroscopy
Linear rotor, spectra

Two opposing effects.

Boltzman’s distribution: The most populated state is the

ground state, the population of the states decreases with

increasing J, thus peaks of various intensities are expected.

MJ quantum number: The number of degenerate states

increases with increasing J. (The statistical weight increases.)

The sum of the two contributions results in the maximum of

intensities (Temperature-dependent!)
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Rotational spectroscopy
rotational spectroscopy, population

intensities depend on the population of the lower state

Boltzmann:
NJ

N
=

e−εJ/kT

q

NJ

N
= gJ

e−hcBJ(J+1)/kT

q
(the level of degeneracy can be also considered:gJ )

NJ

N
= (2J + 1)

e−hcBJ(J+1)/kT

q

dNJ/N

dJ
= 0 at the maximum

d

dJ
{(2J + 1)e−hcBJ(J+1)/kT } = 0

2e−hcBJ(J+1)/kT + (2J + 1)
−hcB

kT
(2J + 1)e−hcBJ(J+1)/kT = 0

(2J + 1)2 =
2kT

hcB

Jmax ≈
√

kT

2hcB
−

1
2
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Rotational spectroscopy
rotational spectroscopy, population
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Rotational spectroscopy
rotational spectroscopy, CO molecule

F (J) = BJ(J + 1), J = 0, 1, 2, . . .

ν̃(J + 1← J) = F (J + 1)− F (J) = 2B(J + 1), and B =
~

4πcI

Isotope effects: 13C, 18O
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Rotational spectroscopy
rotational spectroscopy, population
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Rotational spectroscopy
Spherical rotor, selection rules

The molecule must have a permanent dipole moment,

µperm 6= 0.

=⇒ For each spherical rotor µperm = 0, hence there is no

rotational spectrum.
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Rotational spectroscopy
Symmetric rotor, selection rules

The molecule must have a permanent dipole moment,

µperm 6= 0.

∆J = ±1

∆K = 0

Because of the last rule, equidistant lines are expected:

F (J + 1)− F (J) = 2B(J + 1)

In practice a slight splitting wrt K is observed. (K=0 → 0,

K=1 → 1, K=2 → 2) (centrifugal distortion)
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Rotational spectroscopy
Symmetric rotor, selection rules

Rotational energy levels of prolate (a) and oblate (b) symmetric

rotors
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Rotational spectroscopy
Symmetric rotor, selection rules, effect of centrifugal distortion

Splitting wrt K (K=0 → 0, K=1 → 1, K=2 → 2)

Splitting of the J=7 → J=8 transition wrt K in the rotational spectrum of SiH3NCS
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Rotational spectroscopy
Asymmetric rotor

Transition between the prolate and oblate symmetric rotors.

Asymmetry parameter:

κ = 2IaIc−Ib(Ic +Ia)
Ib(Ic−Ia)

Prolate symmetric

Ia < Ib = Ic

κ = 2IaIb−Ib(Ib+Ia)
Ib(Ib−Ia) = −1

Oblate symmetric

Ia = Ib < Ic

κ = 2IaIc−Ia(Ic +Ia)
Ia(Ic−Ia) = 1
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Rotational spectroscopy
Energy levels of the asymmetric rotor

(a) prolate symmetric rotor, (b) oblate symmetric rotor, κ

asymmetry parameter

Selection rule:

a, µperm 6= 0

b, ∆J = 0,±1
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

Rotational transitions are located in the microwave(1mm-1cm) and

far infrared(0.03-1mm) regions.

On the abscissa, instead of λ:

frequency (ν) in MHz or GHz in the microwave region

wavenumbers (ν∗) in cm−1 in the far IR region
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

Molecular geometry

coordinates of nuclei (In rotational spectroscopy the

coordinates are given wrt the principal axes of inertia

a, b, and c.)

or:

bond lengths and bond angles calculated from the coordinates

of the nuclei
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

How many independent bond lengths and angles does a H2O

molecule have?

d(H1—O)

θ(H1—O—H2)
The other parameters can be calculated from these ones if the

molecule is regarded as an isosceles triangle.

Pl. d(H2—O) = d(H1—O)

d(H1—H2) = 2 d(H1—O) cos [θ(H1—O—H2)/2]
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

How many independent bond

lengths and angles does a C6H5Cl

molecule have?

d(C1-Cl),

d(C1-C2), d(C2-C3), d(C3-C4),

d(C2-H2), d(C3-H3), d (C3-H3),

θC1C2C3), θ(C2C3C4), θ(C3C4C5), θ(ClC1C2),

θ(H2C2C3), θ(H3C3C4), θ(H4C4C5)
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

How many equations do we have for the calculation?

Three!!!

Ia = fa(d1, d2, . . . , θ1, θ2, . . . )

Ib = fb(d1, d2, . . . , θ1, θ2, . . . )

Ic = fc(d1, d2, . . . , θ1, θ2, . . . )
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

Solution: synthesis of isotopically substituted compounds and

measurement of their microwave spectra.

It can be assumed that upon substitution,

the changes in bond lengths and angles are negligible

the changes in moments of inertia are significant.

Thus we can derive enough equations for the determination of the

structure.
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

Example: determination of the molecular structure of carbamide

P. D. Godfrey, R. D. Brown, A. N. Hunter, J. Mol. Struct.

413-414, 405 (1997)
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

Isotopomers

H2N—CO-NH2

H2N—CO-NHD

H2
15N—CO—15NH2

H2N—C18O—NH2
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Rotational spectroscopy
Determination of molecular geometries from rotational spectra

Results

Bond lengths (Å)

C–O 1.2211

C–N1 1.3779

N1–H1 0.9978

N1–H2 1.0212

Bond angles (o)

C–O–N1 122.64

N1–C–N2 114.71

C–N1–H1 119.21

C–N1–H2 112.78

C–N1–H2 118.61
Dihedral angles (characteristics of

conformers)
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Rotational spectroscopy
Centrifugal distortion

rigid rotor so far (rotation has nothing to do with other internal coordinates)

centrifugal distortion (e.g., linear rotors)

F (J) = BJ(J + 1)− DJJ
2(J + 1)2

D - centrifugal distortion constant ( 4B3

ν̂2 ), ν̂: vibrational wavenumber
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Rotational spectroscopy
Stark effect

The electric field interacts with the permanent electric dipol

moment.

Energy shift for a symmetric rotor: ∆E = −µEKMJ
J(J+1) , where E is

the electric field and µ is the permanent dipol moment of the

molecule.

For a linear rotor the energy shift is quadratic :

∆E = α(J,MJ)µ2E2.
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Rotational spectroscopy
Centrifugal distortion, spectra of Td molecules

Td molecules are spherical rotors (SiH4), µperm = 0.

centrifugal distortion =⇒ small permanent electric dipol moment =⇒ weak rot.

spectra. Transition wavenumbers: ν̃ = 2B(J + 1)

No dipole moment is produced for Oh (e.g., SF6) =⇒ no rotatialal spectra
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Vibrational spectroscopy (diatomic molecules)
Energy levels

the harmonic oscillator problem:

V (x) = V (0) +

{
dV

dx

}
x +

1
2

{
d2V

dx2

}
x2 + . . .

− ~2

2µ
d2Ψ

dx2 +
1
2
kx2Ψ = EΨ

1
µ

=
1
m1

+
1
m2

effective/reduced mass

Ev = (v +
1
2

)~ω, v = 0, 1, 2, . . . ; ω =

√
k

µ
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Vibrational spectroscopy (diatomic molecules)
Energy levels

energies in wavenumbers (vibrational terms)

Ev = (v +
1
2

)~ω, v = 0, 1, 2, . . . divide by hc

G (v) = (v +
1
2

)ν̃, v = 0, 1, 2, . . . ; ν̃ =
ω

2πc

selection rule

the electric dipole moment must change during vibration

∆v = ±1

infrared active/inactive vibrations

∆G(v+ 1
2 ) = G (v + 1)− G (v) = ν̃ for all adjacent transitions

The absorption frequency is independent of the state from which the

transition takes place. It equals the eigenfrequency of the oscillator.
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Vibrational spectroscopy (diatomic molecules)
Energy levels

Boltzmann population of the first vibrational excited state

1← 0 fundamental transition

hc∆G 1
2

= hc ν̃ = ∆E in wavenumbers

N1

N0
= e−∆E/kT = e−hcν̃/kT

ν̃ � 600cm−1 ⇒ N1

N0 + N1
× 100%� 5%

at room temperature (300K ≈ 209 cm−1) practically only the

ground state is occupied
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Vibrational spectroscopy (diatomic molecules)
Anharmonicity

Shortcomings of the quadratic

approximation: the vibration of

diatomics is not fully harmonic.

V (r) = hcDe

{
1− e−a(r−re )

}2
xe =

ν̃

4De
, a =

√
k

2hcDe

where xe is the anharmonicity constant

G(v) = (v +
1
2

)ν̃ − (v +
1
2

)2xe ν̃

∆G(v+ 1
2 ) = G(v + 1)− G(v)

= ν̃ − 2(v + 1)xe ν̃
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Vibrational spectroscopy (diatomic molecules)
Anharmonicity

harmonic: G (v) = (v +
1
2

)ν̃, v = 0, 1, 2, . . .

∆G(v+ 1
2 ) = G (v + 1)− G (v) = ν̃

anharmonic: G (v) = (v +
1
2

)ν̃ − (v +
1
2

)2xe ν̃ + (v +
1
2

)3ye ν̃, v = 0, 1, 2, . . .

∆G(v+ 1
2 ) = G (v + 1)− G (v) = ν̃ − 2(v + 1)xe ν̃ + . . .

Selection rule is derived for the harmonic oscillator: additional

weak absorption lines corresponding to the ’forbidden’ transitions

0 → 2, 0 → 3.
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Vibrational spectroscopy (diatomic molecules)
Birge-Sponer extrapolation, approximation of the dissociation energy

D0 = ∆G 1
2

+ ∆G 3
2

+ ∆G 5
2

+ · · · =
∑

v ∆G(v+ 1
2 )
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Vibrational spectroscopy (diatomic molecules)
Vibration-rotation (rovibrational) spectroscopy

The rotation and vibration cannot be entirely separated.

Both the vibrational and the rotational energy can change when absorbing a photon.

Rotational transitions accompany vibrational ones → band spectra

(close-spaced lines, 1-10 cm−1, around the vibrational lines, 1000-4000 cm−1)

rotation-vibration terms
rigid rotor - harmonic oscillator approximation

S(v , J) = G (v) + F (J) = (v + 1
2)ν̃ + BJ(J + 1)

∆v = ±1, ∆J = ±1, µperm 6= 0 (selection rules)

∆J = 0 is also allowed for NO molecule which have an angular

momentum about its axis (an unpaired electron)

349



Vibrational spectroscopy (diatomic molecules)
Rovibration spectroscopy, branches

S(v , J) = (v + 1
2 )ν̃ + BJ(J + 1)

in practice ∆v = +1 (excited states are not populated)

three combinations with J

P branch: ∆J = −1, ν̃P (J) = S(v + 1, J − 1)− S(v , J) = ν̃ − 2BJ

Q branch: ∆J = 0, ν̃Q (J) = S(v + 1, J)− S(v , J) = ν̃

R branch: ∆J = +1, ν̃R (J) = S(v + 1, J + 1)− S(v , J) = ν̃ + 2B(J + 1)
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Vibrational spectroscopy (diatomic molecules)
Rovibration spectroscopy, branches

ν̃P (J) = ν̃ − 2BJ

ν̃Q (J) = ν̃

ν̃R (J) = ν̃ + 2B(J + 1)
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Vibrational spectroscopy (diatomic molecules)
Vibration-rotation spectrum of the HCl gas

Isotope effect: 35Cl (75,77%), 37Cl (24,23%)

P-branch: ∆J = −1, Q-branch: ∆J = 0, R-branch: ∆J = +1
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Vibrational spectroscopy
Rovibrational spectroscopy, combination differences

S(v , J) = (v + 1
2 )ν̃ + BJ(J + 1)

Method to determine the rotational

constants:

ν̃P (J) = ν̃ − (B1 + B0)J + (B1 − B0)J2

ν̃Q (J) = ν̃ + (B1 − B0)J(J + 1)

ν̃R (J) = ν̃ + (B1 + B0)(J + 1) + (B1 − B0)(J + 1)2

ν̃R (J − 1)− ν̃P (J + 1) = 4B0(J + 1/2)

ν̃R (J)− ν̃P (J) = 4B1(J + 1/2)
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Vibrations of polyatomic molecules



2

Model: harmonic oscillator

• 3 or more point masses

• all points are connected to the others by springs

• it oscillates harmonically
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Internal coordinates

• The vibrational problem can be solved in Cartesian 
coordinates.

• For molecules it is more advantageous to use internal 
coordinates.

• Number of internal coordinates: 3N-6.
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Internal coordinates

out-of-plane

bond-stretching

angle-bending

torsion
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Normal modes (coordinates)

The motion of an oscillator consisting of several point masses is 
complicated.

It can be resolved into 3N-6 normal modes. (N is the number of 
point masses)

A normal mode is a vibration in which all the mass points

• have the same frequency

• move in phase
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Description of the oscillator of 
several degrees of freedom 

Input data

masses of the points

     coordinates of the points 
(at equilibrium)

 force constants

Normal coordinate analysis

Results

 frequencies of normal modes

 the normal modes (the 
contributions of internal 

coordinates)
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Normal coordinates

Ĥ nuc=∑
i=1

3 N
1

2 M i

∂
2

∂q i
2+V ({qi}, i=1,. .. ,3 N )

Ĥ nuc=∑
i=1

3 N
1
2

∂
2

∂ q 'i
2 +V ({q 'i},i=1,... ,3 N )

Ĥ nuc=∑
i=1

3 N
1
2

∂
2

∂ q 'i
2 +V (q '=0)+∑

i=1

3N

(
∂V
∂ q ' i )q=0q ' i+

1
2
∑
i , j=1

3 N

( ∂
2V

∂q ' iq ' j )q=0q 'iq ' j+...

Ĥ nuc=∑
i=1

3 N
1
2

∂
2

∂ q 'i
2 +

1
2
∑
i , j=1

3N

F ij q 'iq ' j+...

mass-weighted coordinates: q ' i=√2 M iqi

Fij=
∂

2V
∂ qi∂ q j

is a symmetric matrix with real eigenvalues: 

V ({q ' i=0}i=1,... , 3N)=0

(
∂V
∂ q 'i )q=0=0

One can set the zero of the energy scale to have 

Taylor series

At the equilibrium geometry    

q i is the displacement wrt the equilibrium geometry

O

H
1

H
2

qx
O

q y
O

qz
O

qx
H 1

q y
H 1 q y

H 2

qx
H 2

qz
H 2qz

H 1

Fu(k)=λk u
(k )
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Ĥ nuc= ∑
i=1

3 N−6
1
2

∂
2

∂Qi
2 +

1
2
∑
i=1

3N−6

λ iQi
2
=∑

i=1

3 N−6

Ĥ i
harm. oscill .

Among the eigenvalues there are six with zero value,
three rotational and three transitional degrees of freedom: 

1
2
∑
i , j=1

3 N

F ijq ' iq ' j=
1
2
∑
k ,l=1

3N

(∑
i , j=1

3 N

ui
(k)Fij u j

( l))QkQl=
1
2
∑
k=1

3N

λkQk
2

With indices:    ∑ j
F iju j

(k)
=λku i

(k )

∑
i , j=1

3 N

u i
(k )F iju j

(k )
=λk∑

i=1

3N

ui
(k)ui

(k)
=λ k

q ' i=∑
k

ui
(k)Qk

∑
i , j=1

3 N

u i
(l)F iju j

(k )
=λk∑

i=1

3 N

ui
(l )ui

(k)
=0

Qi=∑
j

u j
(i)q ' j Normal coordinates

Symmetry Degeneracy: 1
2
∑
i=1

3N−6

λ iQi
2
=

1
2
∑
Γ ρ

λρ∑
i∈Γρ

Q i
2
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Force constants

Fij=
∂

2V
∂Q i∂Q j

=λiδij

Derivatives of the potential energy wrt the internal coordinates  

Generalization of the spring constant introduced for simple 
harmonic oscillators

V=
1
2
kq2 ∂V

∂ q
=kq

∂
2V

∂q∂ q
=k

1. differentiation 2. differentiation
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There is a separate Schrödinger equation for each normal mode.

For normal mode i:

1
2
[− ∂

2

∂Qi
2
+λ iQi

2
]Ψ v(Qi )=EviΨ v (Qi )

It is similar to that of diatomic molecules.

Qi – normal coordinate i, the motion of the atoms in 
normal mode i

li is related to the frequency of normal mode i:

It can be solved!

λ i=4π2 ν i
2
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The total vibrational energy and wave 
function of the molecule

Eigenvalue: Eigenfunction:

Ev= ∑
i=1

3N−6

E
ν i
(ni)

Ψ v= ∏
i=1

3N−6

Ψ
ν i
(ni)(Qi )

: product symbol, it 
implies the multiplication 
of all the factors

∏

E
ν i
(ni)=hνi (ni+

1
2 )
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is the probability density of finding the nuclei 
in a given volume of space in the given vibrational 
state.

The   functions can also be classified according to 
the molecular symmetry.

Ψ∗

vΨ v

Ψ v

Interpretation of v
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Selection rules
a)

 

Only one normal mode can be excited by a photon

b) The dipole moment of the molecule must change during the 
vibration (but no permanent dipole moment is required, 
e.g.,CCl

4
, benzene)

c) Analyzing the

transition moment it can be proven that the irrep of the normal 
mode must be identical to that for any component of the 
translation, Tx, Ty, or Tz.

Δni=±1 ,
Δn j≠i=0

∫Ψν
∗ μ̂Ψ ν

' dτ
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Ψ v
(n0n1n2 ...)

=∏
i=1

3 N−6

Ψni
(Qi )=∏

i=1

3 N−6

e
−

1
2
α iQi

2

H ni
(√α iQi )

H0(x )=1,H 1( x)=2x , H2=4 x2−2, H 3(x )=8 x3−12 x ,.. .

Ψ v
(0 00 ...)

=∏
i=1

3 N−6

e
−

1
2
α iQ i

2

=e
−

1
2 ∑

i=1

3 N−6

α iQi
2

=e
−

1
2
∑
ρ

αρ∑
i∈Γρ

Qi
2

∑
ρ

αρ∑
i∈Γρ

Q i
2 commutes with the symmetry operations

∑
ρ

αρ∑
i∈Γρ

Q i
2

is a totally symmetric quantity (A
1
)

Ψ v
(0 0 0 ...)

is a totally symmetric state

Rmn=∫Ψm
∗μΨnd τ≠0

To have a transition from the ground state 

, Ψn=Ψν
(000. ..)

Ψm
∗μ product should contain A

1

, μ=(μ x ,μ y ,μz)

should transform as T
x
, T

y
, or T

z
Ψm

α i=√λi,
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Character table of the C2v point 
group

C2v E C2 v(xz) v(yz)
A1 +1 +1 +1 +1 Tz,xx,yy,zz

A2 +1 +1 -1 -1 Rx,xy

B1 +1 -1 +1 -1 Tx,Ry,xz

B2 +1 -1 -1 +1 Ty,Rz,yz
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Example: normal modes of 
formaldehyde[cm-1]

O

C

H H

O

C

H H

O

C

H H

O

C

H H

O

C

H H

O

C

H H

Q1 (a1) 

Q6 (b2)Q5 (b2)Q4 (b1)

Q3 (a1)Q2 (a1)

z

yx

+ +

+

-

2785 1750 1485

1165 2850 1250
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Vibrational frequencies 

1 symmetric CH stretching

2 CO stretching

3 CH2 bending (scissoring)

4 out-of-plane bending (wagging)

5 antisymmetric CH stretching

6 CH2 rocking
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Formaldehyde gas IR spectra
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Formaldehyde gas IR spectra
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Infrared spectra
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Vibrational transitions:

They are located in the IR region

=2-100 

Features of the spectra:

Abscissa: wavenumbers (* [cm-1]) instead of 

Value: 4000-400 cm-1

Ordinate: intensity

absorbance                           transmittance

Sample: gas, liquid, solution, solid.

A=log
I o
I

T=
I
I o
⋅100(% )

μm
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Sample preparation
Gas: 
• cuvette of 10-100 cm length with KBr windows
Solution: 
• solvents: CCl4, CS2, or CH3CN, chloroform
• cuvette of a couple of m path length with KBr windows
Solid
• KBr pellet (grind with KBr, compression)
• film (the solution is placed on a KBr pellet, the solvent is 

evaporated) 
• paraffin suspension
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The infrared spectrum of methane (part)

P-branch
R-branch

Q-branch

T
ra

ns
m

is
si

on
, %
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The infrared spectrum of ammonia

Symmetric rotor: energy of transitions depends on J and K:
relatively complex spectra
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The infrared spectrum of ammonia
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The infrared spectrum of acetanilide crystal in KBr pellet

For liquid and solid samples there is no rotational fine structure.
crystals: splitting due to the lattice vibrations
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Analytical application

Identification of functional groups

‘‘characteristic vibrations’’: a normal mode is dominated 
by one of the motions of a functional group, hence similar 
absorption frequencies are expected for different 
molecules including the same functional group

E.g.:

CH3 2860-2900 cm-1 and 2950-3000 cm-1

CH2 2840-2880 cm-1 and 2920-2950 cm-1

C=O 1660-1720 cm-1
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Vanillin IR spectra (CCl4 solution) characteristic 
frequencies
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Fourier-transform infrared 
spectroscopy
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Fourier transform 
(mathematical summary)

F {x ( t )}=X ( ν )

Abbreviation for Fourier transform: FT.

It maps a function to another function, the independent 
variables of the two functions are the reciprocal of each 
other.

For instance: time-frequency
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Discrete Fourier transform

ϕn( t)=
1

√a
sin (

nπ t
2a

) ,        n=2,4,6,. ..

ϕn( t)=
1

√a
cos (

nπ t
2a

) ,        n=1,3,5,7, ...

ϕ0( t)=
1

√2a

f (t)=∑
i=0

c iϕi(t )

c j=∫
−a

a

ϕ j(t ) f ( t)dt

In the -a,a interval any f(t) function can be reperesented as a linear 
combination of sin and cos functions:                     , where

These functions form an orthogonal basis set: ∫
−a

a

ϕi(t)ϕ j(t)dt=δij

The coefficients can be easily obtained:

and we obtain the continuous Fourier transform 

If a−→∞  the possible values of ωn=
nπ
2a

 become  continuous 
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Fourier transform

X (ν )= ∫
t =−∞

+∞

x ( t )exp( i 2π ν t )dt

Transformation from the time domain to the frequency domain

X (ν )= ∫
t=−∞

+∞

x ( t )cos(2 π ν t )dt+ i ∫
t=−∞

+∞

x ( t )sin (2π ν t )dt

Using Euler’s formula:

x ( t )=
1

2 π
∫

t =−∞

+∞

X ( ν )exp (−i 2π ν t )dt

Inverse transformation: 
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Source: heated ceramic-coated wire or tungsten lamp
Detector: thermocouple or piroelectric crystal

Fourier transform spectrometers
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I ( p ,~ν)=I (~ν )(1+cos (2π~ν p))

Constructive(                  ) or destructive(                  ) interference  
(monochrome radiation,   : wavenumber, p: path difference)~ν

E( x , t )=A (eiω t−i k x
+eiω t−i k (x+ p ))=Ae iω t−i k x (1+e−i k p )

I∝|E|2
=A2 eiω t−i k x e−iω t+i k x (1+e−i k p ) (1+e i k p )=2 A2 (1+cos(kp))=2 A2 (1+cos (2 π~ν p))

Sum of the original and the shifted beam:

The intensity is proportional to the square of E(x,t): 

As the radiation has a contiguous spectra: 

I ( p)=∫0

∞

I ( p ,~ν)d~ν=∫0

∞

I (~ν)(1+cos (2π~ν p))d~ν

I ( p)−
I ( p=0)

2
=∫

0

∞

I (~ν)cos(2π~ν p)d~ν

~ν p=0,1,2,. . . ~ν p=
1
2
,
3
2
, .. .
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Directly measured: interferogram, I(p)

Inverse FT

Spectrum: I(    )~ν

● All the radiation frequency is monitored  simultaneously!
● Good sign-to-noise ratio
●                Fast measurement: FT spectroscopy can be 

applied to investigate processes in time
● FT spectrometers can be combined with gas and liquid 

chomatographs or microscopes  
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Interferogram for acetone vapor

detector signal

optical path difference 
(OPD)

OPD = 0
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The spectrum obtained by Fourier transform
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The spectrum of acetone vapor after division by the background intensity

• For larger molecules the individual rotational lines of the P, Q, 
and R branches can not be seen, only the contour. 



39

ELECTRONIC STRUCTURE 
OF MOLECULES
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The model (Born-Oppenheimer approximation):

The nuclei are clamped, the electrons move in their  field.

Schrödinger equation:

T̂ e

V̂ ne

: kinetic energy of the electrons

: electronic energy

V̂ ee

V nn

: attraction of the electrons and the nuclei

: electron-electron repulsion

: nuclear attraction―a constant because of the 
clamped nuclei approximation.

( T̂ e+V̂ ne+ V̂ ee+V nn )Ψ e=(Ee+V nn)Ψ e

Ee
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This differential equation cannot be solved 
analytically, only approximate (numerical) solutions 
are possible.

E.g, methods based on the variational principle (Hartree-
Fock)



42

Electronic states

Quantum chemistry:

- equilibrium geometry of molecules

- vibrational frequencies and normal modes

- charge distribution

- chemical reactions

- excited states
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N O

CH

R
NO

3

2

CH3 CH

R

3CH3
2NO

N O
+ -

h

h  ,T

1

2

Example for photochemical reactions:

 a photochrome pigment

spiropyrane
colorless

ring opening under UV irradiation

merocyanine
red

ring closure under visible (green) irradiation
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How shall we choose the 
electronic wave functions?
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The molecular orbital model

 LCAO-MO method

MO: molecular orbital

LCAO : linear combination of atomic orbitals
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The approximate wave function is 
written as a Slater-determinant

A row: an electron

A column: an MO

There are no quantum numbers, but spin

Ψ=|
ϕ1α (1) ϕ1β (1) … ϕN β(1)
ϕ1α (2) ϕ1β(2) … ϕN β (2)

⋮ ⋱

ϕ1α(N ) ϕ1β(N ) … ϕN β(N )
|
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Linear combination

The molecular orbitals are constructed by linear 
combination of atomic orbitals.

ϕ=N∑
i

c i χ i

χ i : atomic orbital

c i : combination coefficient

N: normalization factor
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Construction of molecular orbitals: those atomic 
orbitals are combined

a) which lie closely in energy
b) which have significant overlap (or which are 
core orbitals)
c) whose linear combination transforms according 
to some irrep under the symmetry operations of the 
point group of the molecule
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Example: N2 molecule

Simplest combinations:

 one atomic orbital from both atoms

 c1 = c2 = +1, or c1 = +1, c2 = -1
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Example: N2 molecule (1)

a) satisfied

b) satisfied

c) satisfied
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Example: N2 molecule (2)

a) satisfied

b) satisfied

c) satisfied
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Example: N2 molecule (3)

a) satisfied

b) not satisfied

c) not satisfied
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Example: N2 molecule (4)

a) satisfied

b) satisfied

c) not satisfied
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Electronic structure of diatomic 
molecules



55

Homonuclear 
(H2, N2, Cl2)

Diatomic molecules

Heteronuclear 
(NO, CO, HCl)
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E.g.: a homonuclear diatomic molecule, N2
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Simplest molecular orbitals: the linear combinations of 
the identical atomic orbitals of the two atoms.

ϕ+
(1s )=

1

√2
[ χ 1(1s )+ χ 2(1s ) ]

ϕ−
(1s )=

1

√2
[ χ1(1s )− χ 2(1s ) ]
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Construction of 
molecular 

orbitals from 
atomic orbitals
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ϕ+

ϕ−

: ‘‘bonding’’ orbital (lower-energy combination)

: ‘‘antibonding’’ orbital (higher-energy combination)

Notation:

* index : antibonding orbital

no index : bonding orbital

σ

π

-orbital : cylindrical symmetry around the bond

-orbital : nodal plane going through the bond

‘‘g’’ index : symmetric wrt the inversion (gerade = even)

    ‘‘u’’ index : antisymmetric wrt the inversion  (ungerade = odd)

n-orbital : non-bonding molecular orbital 
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Note:

More than two atomic orbitals can also be combined.

cylindrical symmetry Molecular orbitals are 
L

z  
eigenfunctions with 

eigenvalues.
ml ℏ ,   ml=0,1, 2, 3,...  (σ ,π ,δ , ...)



61

Molecular orbital energy diagram for N2
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Molecular orbital diagram for N2

2p2pxx, 2p, 2pyy, 2p, 2pzz

1s1s 1s1s

2s2s2s2s

2p2pxx, 2p, 2pyy, 2p, 2pzz
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MO diagram for N2 : p combinations

occupiedoccupied

virtualvirtual

bondingbonding

antibondingantibonding
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Electronic configuration

Ground state:

Excited state, e.g.:

(σ g1 s )2( σu
* 1 s )2

(σ g 2 s )2 (σu
* 2 s )2 (π u2 p )4 ( σg 2 p )2

(σ g1 s )2( σu
* 1 s )2

(σ g 2 s )2 (σu
* 2 s )2 (π u2 p )4 ( σg 2 p )1( σu

* 2 p )1
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Singlet and triplet states

(σ g1 s )2( σu
* 1 s )2

(σ g 2 s )2 (σu
* 2 s )2 (π u2 p )4 ( σg 2 p )1( σu

* 2 p )1
Excited state:

Singlet state Triplet state

S = 0 S = 1
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Molecular orbitals of polyatomic 
molecules
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MOs of polyatomic molecules: in principle they are 
constructed by combining the AOs of all the atoms.

Core MOs Valence MOs
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Core MOs: 

The overlap between the core orbitals of different atoms is 
very small. Therefore:

 the core orbitals are localized on an atom (or on a 
symmetric group of atoms)

 their shape and energy are hardly different from those of 
the isolated atom
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Valence MOs: the AOs mix

Features:
Energy
Shape – localized or delocalized character

 – point-group symmetry
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Energy of valence MOs:

HOMO: highest occupied MO
LUMO: lowest unoccupied MO
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Localized and delocalized MOs

 Localized on an atom: 
non-bonding electron pair 

 Localized on two atoms
-bond: cylindrical symmetry 

around the bond
-bond: nodal plane through the 

bond
 Localized on a functional group, 
combination of the valence AOs of 
many atoms

local

symmetry
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Molecular orbital energy 
diagram of formaldehyde

1a
1

2a
1

3a
1

4a
1

1b
2

5a
1

1b
1

2b
2

2b
1

n2(O [2 px ])

π (CO)

n1(O [2 py ])

σ2(CH 2)

σ1(CH 2)

σ (CO)

C [1 s]
O [1 s ]

6a
1

σ∗(CH 2)

● Molecular orbitals from a Hartree-
Fock calculation.

● “minimal” basis set (STO-3G)
● Orbitals are not normalized

π∗(CO )
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2a1 -11.125 E
h
 

1a1 -20.312 E
h
  

Core orbitals

Ψ1a1
∝ΨO [1 s ]

Ψ2a1
∝ΨC[1 s ]
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4a1 

-0.808 E
h
 

3a1 

-1.337 E
h
  

Sigma bonding CO  and symmetric bonding CH
2
 orbitals

Ψ3 a1
∝0.77ΨO [2 s]+0.28 ΨC [2 s ]

Ψ4a1
∝−0.43 ΨO [2 s ]+0.57 ΨC[2 s ]

+0.26 ΨH
( 1)[1 s]+0.26 Ψ H

( 2) [1 s ]

∼σ(CO )

∼σ1(CH 2)
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5a1 -0.546 E
h
 

1b2 

-0.633 E
h
  

Antisymmetric CH
2
 sigma and symmetric non-bonding orbital of O

Ψ1b2
∝0.44 ΨO [2 px ]

+0.53ΨC [2 p x]

+0.30 ΨH
(1) [1 s]−0.30Ψ H

(2) [1 s ]

Ψ5a1
∝0.5 ΨO [2 s ]

+0.16 ΨH
( 1)[1 s]+0.16 Ψ H

( 2) [1 s ]

+0.68 ΨO [2 p y]
−0.45 ΨC [2p y ]

∼n1(O [2 p y ])

∼σ2(CH 2)
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2b2 

-0.354 E
h
 

(HOMO)

1b1 

-0.443 E
h
  

Pi and non-bonding orbitals 

Ψ1b1
∝0.68 ΨO [2 pz ]

+0.61ΨC[2 pz ]

Ψ2b 2
∝0.87 ΨO [2p x ]

−0.18 ΨC [2 px ]

−0.36 ΨH
(1 )
[1 s]+0.36 ΨH

( 2) [1 s ]

∼n2(O [2 px ])

∼π(CO)
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6a
1

2b1 

0.629 E
h

0.282 E
h
 

Pi CO and sigma CH
2
 antibonding orbitals

Ψ2b1
∝0.77 ΨO [2 p z]

−0.82 ΨC [2 pz ]

Ψ6 a1
∝1.30 ΨC [2 s ]−0.44 ΨC [2 p y ]

−0.89 ΨH
(1) [1 s ]−0.89ΨH

( 2)[1 s ]

∼π∗(CO)

∼σ∗(CH 2)
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O

N

NN
C2H5

C2H5C2H5

C2H5
+

ClO4
-

Oxazine 1
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HOMO



80

LUMO
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Molecular orbitals

All the atoms contribute

electronic excitation

ionization

Chemical bond

It connects two atoms

bond length

valence vibration

Two different concepts!!!
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Electronic excitations in polyatomic 
molecules
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Electronic excitation in MO theory:

HOMO

LUMO
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Electronic excitation in MO theory:

HOMO

LUMO



85

Energy and intensity of electronic 
excitations: Main aspects

• Local symmetry of orbitals

• Symmetry of the electronic states

• Spin
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Classification of electronic transitions according to 
the local symmetry (e.g., formaldehyde)

typical order of the energy levels
(supposing a nonbonding electron pair)
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Order of excitation energies: 

n->* < ->* ~ n->* < ->* ~ ->* < ->* 

n→
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Selection rule: 

Allowed: n->*, ->*, 
n->*, ->* 

Forbidden: ->*, -> 
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Symmetry (irreducible representation) 
of electronic states

Example: formaldehyde

Point group: C2v
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Character table of the C2v point group

C2v E C2
1
( z ) v(xz) v(yz)

A1 +1 +1 +1 +1 Tz,xx,
A2 +1 +1 -1 -1 Rx,
B1 +1 -1 +1 -1 Tx,Ry,
B2 +1 -1 -1 +1 Ty,Rz,
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Inner shell

core orbitals

Valence shell

occupied orbitals

Valence shell

 virtual orbitals

MO energy diagram  of 
formaldehyde

1a
1

2a
1

3a
1

4a
1

1b
2

5a
1

1b
1

2b
2

2b
1

6a
1

π∗(CO )

σ∗(CH 2)

n2(O [2 px ])

π (CO)

n1(O [2 py ])

σ2(CH 2)

σ1(CH 2)

σ (CO)

C [1 s]
O [1 s ]
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Electronic configurations of 
formaldehyde

Electron configuration of the ground state:

Lowest-energy excited configuration:

n-* transition

(1a1)2(2a1)2(3a1)2(4a1)2(1b2)2(5a1)2(1b1)2(2b2)2

(1a1)2(2a1)2(3a1)2(4a1)2(1b2)2(5a1)2(1b1)2(2b2)1 (2b
1
) 1
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Determination of the symmetry 
(irrep) of electronic states

Ground-state configuration :        A1 state

Irrep of electronic states: the direct product of the irreps of the 
singly occupied MOs

Direct product: multiplication of characters for each symmetry 
operation.

Closed-shell configurations always belong to the A1 irrep.

(1a1)2(2a1)2(3a1)2(4a1)2(1b2)2(5a1)2(1b1)2(2b2)2
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Selection rule: a transition is allowed if the final state belongs to the 
same irrep as any of the translations, Tx, Ty, or Tz 

C2v E )(1
2 zC  v(xz) v(yz)  

A1 +1 +1 +1 +1 Tz,xx,yy,zz 
A2 +1 +1 -1 -1 Rx,xy 
B1 +1 -1 +1 -1 Tx,Ry,xz 
B2 +1 -1 -1 +1 Ty,Rz,yz 

 
 

Lowest-energy excited configuration:
A2 state

 E )(1
2 zC  v(xz) v(yz) 

B1 +1 -1 +1 -1 
B2 +1 -1 -1 +1 

 

B1×B2=A2 +1 +1 -1 -1 
 

(1a1)2(2a1)2(3a1)2(4a1)2(1b2)2(5a1)2(1b1)2(2b2)1 (2b
1
) 1
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Spin:
Singlet and triplet states

A2 state

1A2
3A2

Singlet state Triplet state

2b1

3b2

(1a1)2(2a1)2(3a1)2(4a1)2(1b2)2(5a1)2(1b1)2(2b2)1 (2b
1
) 1
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S0: ground state

S1, S2: singlet excited states

T1, T2: triplet excited states
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Selection rule

Singlet-singlet Allowed 

Triplet-triplet Allowed 

Singlet-triplet Forbidden 

Triplet-singlet Forbidden 

 

 

S = 0
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 E

[ 1 0 0 0  c m ]
- 1

5 7 . 2

5 5 . 5

3 2 . 8

2 5 . 2

0
1

A 1

A ( b b )
3

2 2 1

A ( b b )
1

2 2 1

B ( b b )
1

1 1 1

B ( b a )
1

2 2 1

B ( b a )
1

1 1 1

n


*

n



*





*

n



*





*

*

*

*

*
*

 











Transitions in the electronic excitation spectrum of 
formaldehyde
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Ultraviolet-visible spectroscopy
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Excitation of core electrons: X-ray radiation

Excitation of valence electrons: UV and visible light.

 = 100-1000 nm

Far (vacuum: O
2
 and N

2 
absorb here)  UV region: 100-200 nm

Near UV: 200-400 nm

Visible region: 400-800 nm

Near IR region: from 800 nm.
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The spectrum:

Abscissa:  [nm]

Ordinate: intensity

absorbance                           transmission

More frequently solvent samples are studied. (Solvent: 
n-hexane(sigma-sigma* is the lowest tr.) , water or 
ethanol (sigma-sigma*, n-sigma*), etc.)

A=log
I o
I

T=
I
I o
⋅100(% )
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Organic compounds

a) molecules containing functional groups with both -bonds and 
nonbonding electron pairs (CO, CN, NO2-groups; n-* transitions)

b) molecules with weakly-bonded nonbonding electron pairs (Cl, 
Br, I, Se-containing compounds; n-* transitions, above 200 nm)

c) molecules containing conjugated -electron system (-* 
transitions, above 200 nm)

Studied compounds
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Inorganic compounds

Transition metal complexes

The degenerate d or f orbitals of the metal atom split due to the 
ligands. The energy difference between split orbitals is small. 
These transitions are located in the UV-visible spectral region.

Theoretical fundamentals: ligand-field theory.
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F é n y f o r r á s

R é s e k

F o t ó d i ó d a t ö m b

M i n t a
h o l o g r a f i k u s  r á c s
H o m o r ú

 

Single-beam UV-visible absorption spectrophotometer

sample concave grating

slits

light 
source

photodiode
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F é n y f o r r á s

R é s

F é n y o s z t ó

M i n t aR e f e r e n c i a

D e t e k t o r o k

O p t i k a i  r á c s

Double-beam UV/VIS absorption spectrophotometer

Grating

Slit

Light source

Detectors

SampleReference

Beam splitter

(it is slowly rotated during the measurement to scan the wavelength) 

Empty cuvette (+solvent)

(polychromatic)
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Electronic spectrum of 
benzene (in ethanol)

Above the dissociation limit:
absorption is a continuum. 
Below the dissociation limit: 
electronic spectrum
contains  the vibrational states. 
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Electronic spectrum of benzene (gas phase)

Na
b : excitation from state a  to state b  of normal mode N                                                                                         

Normal mode 6:

e- excitation:
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Theory of fluorescence and 
phosphorescence
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Absorption: all compounds

Emission: few materials, mainly large, aromatic 
compounds

Demonstration of emission: Jablonski diagram 

(a schematic electronic energy diagram for 
molecules with vibrational fine structure, so-
called ‘‘vibronic’’ states)
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Jablonski-diagram (fate of excited states) 

V R

V R

S 0

S 1

T 1

T 2

S 2

s z i n g u l e t t
a b s z o r b c i ó

I S C

I C
f l u o r e s z c e n c i a

t r i p l e t t
a b s z o r b c i ó

f o s z f o r e s z c e n c i a

I C

V R :
I S C :  
I C :
S :
T :

 r e z g é s i  r e l a x á c i ó
S p i n v á l t ó  á t m e n e t  ( I n t e r  S y s t e m  C r o s s i n g )

 b e l s ő  k o n v e r z i ó  ( I n t e r n a l  C o n v e r s i o n )
 s z i n g u l e t t

 t r i p l e t t

v = 0

v = n

s u g á r z á s n é l k ü l i  á t m e n e t

s u g á r z á s o s  á t m e n e t

non-radiative transition

radiative transition

phosphorescence

triplet 
absorption

singlet 
absorption

 
fluorescence

VR: vibrational relaxation
ISC: intersystem crossing
IC: internal conversion
S, T: singlet and triplet states

Usually the triplet states have 
lower energy (see: He atom)

Without radiations the 
electrons are in the ground
state S

0 
(see: Boltzmann dist.). 

Due to the radiation  the 
state S

1 
will be populated.  

Monochrome radiation: few vibr. 
level will be populated, 
polychrome rad: many occupied 
vibr.states

vibrational relaxation: no radiation, 
the extra energy transferred to the
solvent (rapid process, 10-12s). 
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Jablonski-diagram (fate of excited states) 

V R

V R

S 0

S 1

T 1

T 2

S 2

s z i n g u l e t t
a b s z o r b c i ó

I S C

I C
f l u o r e s z c e n c i a

t r i p l e t t
a b s z o r b c i ó

f o s z f o r e s z c e n c i a

I C

V R :
I S C :  
I C :
S :
T :

 r e z g é s i  r e l a x á c i ó
S p i n v á l t ó  á t m e n e t  ( I n t e r  S y s t e m  C r o s s i n g )

 b e l s ő  k o n v e r z i ó  ( I n t e r n a l  C o n v e r s i o n )
 s z i n g u l e t t

 t r i p l e t t

v = 0

v = n

s u g á r z á s n é l k ü l i  á t m e n e t

s u g á r z á s o s  á t m e n e t

non-radiative transition

radiative transition

phosphorescence

triplet 
absorption

singlet 
absorption

 
fluorescence

ISC: intersystem crossing:non-ratiative siglet-triplet 
transition.  

Phosphorescence: forbidden at first order →  small 
probability, T

1
 has long lifetime in the order of 

micro- or millisec. 

Fluorescence: emission process where
the initial and final electronic states have 
the same multiplicity. From the lowest S

1

    to one of the vib. states of  S
0
. 

Due to VR the emitted radiation
has lower energy than the absorbed. 

IC: the liberated energy 
transforms into heat: rotational 
and vibrational states will be 
excited. No radiation. No spin
multiplicity changed. Typical 
for flexible molecules.   

Photoinduced absorption: S
1

eliminates a second photon.  

Typical for rigid molecules (fixed 
saturated rings).  
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Phosphorescence

Due to the significant spin-orbit coupling, the spin of  
molecule containing moderately heavy atom (e.g., sulfur) is 
not a exact quantum number any more and the intersystem 
crossing is possible.  

If the Hamiltonian does not contain the spin, the S is a good 
quantum number, and the singlet-triplet transition is not 
possible.
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Absorption and emission spectra of the 
Rodamine-B dye
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S
0

S
1

Δ Eν=2h ν '

Δ Eν=2h ν

Δ E (S0, nν=0→S1,nν=2)=Δ Ee+2h ν '

Δ E (S1,nν=0→S0,nν=2)=−(Δ Ee−2hν)

Δ E (S0, nν=0→S1,nν=0)=
−Δ E(S1, nν=0→S0,nν=0)=Δ Ee

Absorption and fluorescence
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Fluorescence-spectroscopy

The emission is measured after the absorption of light.

This is mainly fluorescence (sometimes phosphorescence)
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The spectrum:

Abscissa:  [nm]

Ordinate: intensity

IF (arbitrary units)

F fluorescence quantum yield

 

Solvents: (see UV/VIS spectroscopy)

ΦF=
number of emitted photons
 number of absorbed photons
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D e t e k t o r
O p t i k a i  r á c s

E M I S S Z I Ó S  M O N O K R O M Á T O R

G E R J E S Z T É S I  M O N O K R O M Á T O R

F é n y f o r r á s

O p t i k a i  r á c s

M i n t a

Spectrofluorimeter

Grating

Light source

Sample GratingDetector

Emission monochromator

Excitation monochromator
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The advantages of fluorescence spectroscopy

1. Much higher sensitivity in contrast to absorption  
experiments since the intensity is measured compared to I 
= 0 (‘‘darkness’’).

The ideal concentration of a strongly fluorescing 
compound is ~10-6 M.

2. Double selectivity due to the

- wavelength of the absorbed light

- wavelength of the emitted light

Important analytical method!
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Optical rotation and circular 
dichroism

There are many chiral compound in the living matter:

amino acids, sugars, amines, steroids, alkaloids, 
terpenoids

These can be investigated by chiroptical methods:

optical rotation,  optical rotatory dispersion (ORD), 
circular dichroism (CD)
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Linearly polarized light
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Optical rotation

The solution of chiral molecules rotates the 
plane of polarization:

 = [M]·c·

[M] molar (optical) rotation

c concentration

 path length of the cuvette
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Molar optical rotation is wavelength-dependent

Polarimeter: [M] is measured at a given 
wavelength, usually at the D-line of Na ([M]D)

application: optical purity,  

 Spectropolarimeter: [M] -  spectrum is measured 
(Optical rotatory dispersion, ORD)

      application:  structure analysis 

100∗
[M ]

[M ]pure enantiomer
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circularly-polarized light

(a) left (b) right

CD
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Circular dichroism

The absorption coefficients of the left and right 
circularly-polarized light are different!

This effect is measured:

AL = L·c· , and AR = R·c·  

CD signal: A = AL – AR = (L - R) ·c· 

CD spectrum: A as a function of the wave length  
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Example: CD spectrum of (R)- and 
(S)-phenyl-ethyl-amine

CH3

H

H2N

H2N

H
CH3

(R)-FEA (S)-FEA
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CD-spectrum

absorption spectrum

CD spectrum of (R)-phenyl-ethyl-amine
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CD-spectrum

absorption spectrum

S-PEA

R-PEA

CD spectrum of (R)- and (S)-phenyl-ethyl-amine
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Application of CD spectroscopy

1. Structure analysis: determination of the configuration

2. Analytical chemistry: measurement of the concentration 
of chiral compounds

3. Analysis of biological systems (HPLC + CD 
spectrometer)
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PHOTOELECTRON 
SPECTROSCOPY
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The fundamentals of photoelectron-
spectroscopical methods. The 

Koopmans’ theorem
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Photoelectron spectroscopy = PES

A spectroscopical method based on ionization!

 the sample is bombarded with monochromatic high-energy (far 
UV or X-ray) photons, which ionize the molecule

 the kinetic energies of the ejected electrons are measured, and the 
ionization energy is calculated therefrom
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 the electrons are in molecular orbitals

 the orbital energies (i) can be calculated by quantum-
chemical methods (eigenvalues of the Fock operator)

Molecular-orbital theory

Koopmans’ theorem: Ii = - i
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Ionization potential (energy): the energy required to 
strip a molecule of an electron

An experimentally observable quantity

A molecule has n ionization potentials with n being 
the number of electrons.

Notation: Ii

Ii is the energy required to strip the molecule of the 
ith electron after the first i − 1 have already been 
removed 
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Ei+1

Ei-1

Ei

0

i+1

i

i -1

Ii

Ionization on the MO energy diagram

i

i+1

i-1
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The Koopmans’ theorem is a good 
approximation only for the first ionization 
potential, because the electrons reorganize 
after ionization, and the orbital energies of the 
ions are different.
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Ionization: reaction equation

M + photon  M+ + e-
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hν=I+ΔEvib+ΔE rot+
1
2
me ve

2
+

1
2
m

M+ vM+

2

photon energy

ionization potential

change in vibrational energy

change in rotational energy

kinetic energy of the 
electron

kinetic energy of the ion

Ionization: energy balance
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The basic principle of photoelectron spectroscopy 

hν=I+ΔEvib+ΔErot+
1
2
me ve

2
+

1
2
m

M+ vM+

2

known
(monochromatic light) measured

negligible
I >> Evib >> Erot

negligible
(momentum 

conservation)

calculated

Photoelectron spectrum: distribution of the electronic kinetic energy



139

Ionizing radiations

Far UV light

It is capable of removing valence electrons

UPS = ultraviolet photoelectron spectroscopy

X-ray

It is also capable of removing core electrons

XPS = X-ray photoelectron spectroscopy

AES = Auger electron spectroscopy 

XF = X-ray fluorescence
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Electron spectroscopies

MO 
energy

valence orbitals

core orbitals
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Stabilization after removing a core electron

Another (valence or core) electron falls down from a higher-energy 
orbital, and the corresponding energy is released by

- ejecting a second electron―Auger-effect, experimental method: 
Auger electron spectroscopy (AES)

- emitting an X-ray photon―X-ray fluorescence (XF), the frequency 
of the emitted photon characterizes the element, XF is an 

analytical method, e.g., determination of alloy composition 
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Ultraviolet photoelectron 
spectroscopy (UPS)

The valence electrons of molecules are ejected by far UV 
photons.
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Light source
He discharge lamp.

He plasma (a plasma is a collection of ground- and excited-state 
ions, atoms, and molecules as well as electrons)

Two lines are used:

He(I) radiation:

21P1  11S0 transition of the He atom 

21.22 eV ( = 58.4 nm) 

He(II) radiation:

n=2   n=1 transition of the He+ ion

40.81 eV ( = 30.4 nm)
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Components of a photoelectron 
spectrometer

target 
chamber

     photons    

slit electron energy
analyzer

slit

electron
detector

recorder
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The Franck-Condon principle

The electronic excitation and ionization are much 
faster than the motion of the nuclei. Thus the change in 
interatomic distances can be neglected during these 
processes.
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Adiabatic ionization potential: the difference between the 
vibrational ground state of the ion and the molecule

Vertical ionization potential: energy of the ionization at a fixed 
internuclear distance. The resultant ion is often in excited 
vibrational state.
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The UPS spectrum of N2

Ionization energy/eV (1eV=8065.6 cm-1 )  
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MO energy diagram of N2

nonbonding
electron pair

bonding 
-orbitals

antibonding 
-orbital
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Application of UPS

Testing quantum-chemical methods

              Ii = - i

measured calculated

Low-pressure samples!
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X-ray photoelectron spectroscopy
(XPS)

Both the core and the valence electrons can be ejected by 
X-ray radiation.
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Sources of X-ray radiation

A metal target (usually Mg or Al) which is bombarded with high-
energy electrons resulting in ejecting electrons from the innermost 
(n=1, „K”) shell. The vacancy is filled by an electron falling back 
from the next highest energy shell (n=2, „L”), the energy is emitted 
as characteristic X-ray.

Mg K lines: 1253.4 keV and 1253.7 keV

Al K lines: 1486.3 keV and 1486.7 keV

One component of the doublet is chosen by a quartz crystal (it 
works as a diffraction grating).

Resolution: ~ 0.2 keV (1600 cm-1), the vibrational fine structure 
cannot be observed.
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Applications of XPS
 the cross section of the ionization due to X-rays is by 2-3 
orders of magnitude smaller than that by far UV photons.

 thus it is mainly used for the analysis of solid samples.

 the ionization potential of core electrons is characteristic 
of the atoms, hence it can be applied to the determination 
of the atomic composition of the samaples.

 chemical shift: provides info about the surrounding 
elements 

 the penetrability of X-rays is good, however, that of the 
electrons is small, therefore the composition of the surface 
of the sample is measured.

Surface analysis!
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Components of an XP spectrometer 
(the same as a UP spectrometer)

target 
chamber

     photons    

slit electron energy
analyzer

slit

electron
detector

recorder
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XPS spectra of a 2:1 mixture of CO and CO2 gases

Chemical shift
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XPS spectrum of Cu, Pd, and a 60% Cu 
and 40% Pd alloy

Ionization energy/eV
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XPS spectra of nitric oxide (NO) absorbed on an iron surface
 
1) Iron surface without NO at 85 K
2) Exposed to NO at 85 K and 2.65×10-5 Pa for 80 s
3) As for 2 but exposed for 200 s
4) As for 2 but exposed for 480 s

      5) After warming to 280 K

N(1s) in N atom N(1s) in NO molecule
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LASERS AND LASER 
SPECTROSCOPY



158

Laser: a source of strong, coherent, and near-monochromatic 
light (electromagnetic radiation)

Light Amplification by Stimulated Emission of Radiation

L A S E R

First laser: ruby laser

  Theodore Maiman (1960)
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Application of lasers
• optics

• medical technology

• military technology

• informatics

• material processing

• applications in chemistry:
– spectroscopy
– photochemistry
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Operation of lasers

• Stimulated emission

• Population inversion

• Optical resonator
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Radiative transitions

absorption spontaneous emission stimulated emission
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Absorption

M 1+hν→M 2

Rate equation:

−dN 1/dt=A12N 1 ρν

N1 : concentration of molecules in the initial 
state

      :  concentration of photons

A12 : rate constant of the absorption

ρν

absorption
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Spontaneous emission

M 2→M 1+hν

Rate equation:

−dN 2 /dt=dN1 /dt=B21N 2

B21 : rate constant of the spontaneous 
emission

spontaneous emission
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Stimulated emission

M 2+hν→M 1+2hν

Rate equation:

−dN 2 /dt=dN1 /dt=A21N2 ρν

A21 : rate constant of the stimulated emission

The frequency, direction, and 
polarization of the emitted photon is 
identical to those of the stimulating 
photon.

stimulated emission
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Einstein coefficients

Connections among the three rate constants:

B21=
8 πhν3

c3
A12

A21=A12

At equilibrium the rate constants can not be independent:
Net effect of absorption+spontaneous emission+induced 
emission to the population of state 2 is zero. 

A12N 1 ρν−B21N 2−A21N 2 ρν=0
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In lasers (there is no equilibrium!) the light is amplified by 
stimulated emission, more photons are emitted by stimulated 
emission than absorbed.

Stimulated emission:

Absorption:

Since A21=A12, the condition for lasers:

N2>N1

(The spontaneous emission is ignored.)

−dN 2 /dt=dN1 /dt=A21N2 ρν

−dN 1/dt=A12N 1 ρν
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Inverse population

In thermal equilibrium: Boltzmann distribution

N1/N2=exp((E2-E1)/kT)

If T increases, N1 approaches N2.

But N1<N2 always holds.

In lasers N2>N1.
This state is referred to as inverse population.

No thermal equilibrium!

The establishment of inverse population is possible using special 
systems of three or four energy levels.
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Pumping of lasers

Transmission of the energy to the laser is required for the 
stimulated emission.

The pumping can be carried out in several ways:

- optical (flash lamp, light of another laser)

- electrical (discharge in gas)

- chemical (chemical reaction)
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Optical resonator

The active medium is placed between two mirrors.

The light is reflected back and forth, consequently the path 
length of the photons, thus the likelihood of the stimulated 
emission increases.

active laser medium

end mirror
R=100%

exit mirror
R=80-99%  
T=1-20%

resonant optical cavity
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Condition for constructive 
interference

Standing waves:

 - wavelength, m - integer

Frequency:

L=m
λ
2

ν=
c
λ
=

mc
2 L
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Spectrum of lasers

M ó d u s  s á v -
s z é l e s s é g

E r ő s í t é s i  g ö r b e

A z  á t m e n e t
f é l é r t é k - s z é l e s s é g e

L e h e t s é g e s  r e z o n á t o r -
m ó d u s o k

V e s z t e -
s é g e k

M a x .
e r ő s í t é s

E r ő s í t é s

 0 

Amplification
Maximal 
amplific-
ation

Amplification curve

Possible cavity modes

                                
                

                     

    

FWHM      
of mode    

   Loss 
 
      

Full width at half 
maximum of the 
transition (10-6-101 nm)

The gas lasers have some modes, 
the dye lasers have infinitely many 
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Types of lasers 
(by the active medium)

• doped insulator lasers

• semiconductor lasers

• gas lasers

• dye lasers
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Doped insulator lasers

Active medium: ionic insulator doped with metal ions

The laser radiation is produced by the doping ions. 

Pumping: optical (white-light emitting lamp or semiconductor 
laser)

• ruby laser (Al
2
0

3
:Cr) 

• Nd:YAG laser

• titanium sapphire laser

active laser medium
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Neodymium-YAG laser

Crystalline host: Y3Al5O12

yttrium aluminium garnet = YAG

Dopant ion: Nd3+ (~1% by weight)
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Neodynium is the 60th element.

The electron configuration of the Nd atom:

KLM4s24p64d104f45s25p66s2

The electron configuration of the Nd3+ ion:

KLM4s24p64d104f35s25p6
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Energy levels of the Nd:YAG laser

configuration

states       

ground state

vector model spin-orbit
coupling

crystal-field
splitting

                                            

Large number broad 
absorption lines
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Gas lasers
Active medium: pure gas (e.g., nitrogen laser)

   gas mixture (e.g., carbon dioxide laser)

Pumping: electrical (gas discharge)

Helium-neon laser (electronic tr., visible light)

Argon laser (electronic tr., visible)

N2 laser (electronic tr., UV light)

CO2 laser (vibrational tr., IR light)

For a gas the absorption bands are narrow 



178

Argon laser

Active medium: argon gas of ~0.5 Torr pressure, in a discharge tube

In the discharge - excited molecules
- ground-state ions   arise (plasma)
- excited ions

Operating characteristics of the discharge tube: current, voltage, 
pressure, temperature―the population of various energy levels of 
the Ar ions depends on these factors.

Population inversion can be achieved in particular excited states of 
Ar ions wrt to the lower states.

}
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Ar is the 18th element.

Electron configuration of the  Ar atom:

1s22s22p63s23p6

Ground-state electron configuration of the Ar+ 
ion:

1s22s22p63s23p5
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Energy levels of the 
argon atom

Ground state of the argon ion

Ground state of the argon atom

Ar+ + e- recombination
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The argon laser

+ 5 0 0 V ,  6 0 A-

k a t ó d a n ó d k i l é p ő  t ü k ö r
R = 9 8 % ,  T = 2 %

v é g t ü k ö r
R = 1 0 0 %

d i s z p e r z i ó s
e l e m

anode  cathode

dispersing       
element

end mirror
R=100%     

exit mirror            
R=98%, T=2%       
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CO2 laser

Active medium: ~ 1:1 mixture of CO2 and N2 gases

sealed: closed discharge tube of ~10 Torr pressure
open: gas flow through the cavity at ~ atmospheric pressure

The laser transition takes place between the excited vibrational 
states of the CO2 molecule, therefore infrared light is emitted.

N2 – buffer gas.
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Normal modes of the CO2 molecule

O C O OCO OCO

symmetric stretching bending antisymmetric 
stretching

v1 v2 v3

Quantum numbers for the three normal modes.
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Energy levels relevant to the CO2 laser

1

9

0 0 1

P 1 0

R 1 0

1 0 . 6  m

9 . 6  m

1 0 0 0 2 0

0 1 0

1 0

1 1

P u m p á l á s

E
ne
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 (
eV

)

0 . 1

0 . 2

0 . 3

0 . 4 N i t r o g é n S z é n d i o x i dnitrogen carbon dioxide

Pumping    

E
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y 

(e
V

)
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id
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n!

collision
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Advantage:

the electric energy is efficiently converted to infrared light

Application:

• metal processing

• surgery

• spectroscopy: plasma generation
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The dye lasers

Active medium: solution of strongly fluorescing dyes.

Pumping: optical (white-light lamp or another laser).

Advantage: tunable

The laser transition takes place between the vibrational ground 
state of the S1 electronic state and the excited vibrational state of 
S0.
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Jablonski-diagram

V R

V R

S 0

S 1

T 1

T 2

S 2

s z i n g u l e t t
a b s z o r b c i ó

I S C

I C
f l u o r e s z c e n c i a

t r i p l e t t
a b s z o r b c i ó

f o s z f o r e s z c e n c i a

I C

V R :
I S C :  
I C :
S :
T :

 r e z g é s i  r e l a x á c i ó
S p i n v á l t ó  á t m e n e t  ( I n t e r  S y s t e m  C r o s s i n g )

 b e l s ő  k o n v e r z i ó  ( I n t e r n a l  C o n v e r s i o n )
 s z i n g u l e t t

 t r i p l e t t

v = 0

v = n

s u g á r z á s n é l k ü l i  á t m e n e t

s u g á r z á s o s  á t m e n e t

non-radiative transition

radiative transition

phosphorescence

triplet 
absorption

singlet 
absorption

 
fluorescence

VR: vibrational relaxation
ISC: intersystem crossing
IC: internal conversion
S, T: singlet and triplet states
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A dye laser

f i n o m  e t a l o n
h a n g o l ó  é k

s t o p

k o l l i m á t o r
R  =  1 0 0 %

p u m p á l ó  t ü k ö r
R  =  1 0 0 %v é g

 t ü k ö r
R  =  1 0 0 %

R  =  8 5 %
T  =  1 5 % f e s t é k s u g á r ( j e t )

pump mirror
R=100%

dye jet          

collimating
mirror

R=100%
filter thin etalon

end mirror
R=100%

exit mirror
R=85%

The dye should be circulated to avoid the overheating
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Spectral ranges of emission 
bands for different laser dyes

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
0 . 0 1

0 . 1

1 . 0

W a v e l e n g t h  ( n m )

T y p i c a l  o u t p u t
p o w e r  ( W )

P o l y p h e n y l  1

S t i l b e n
C 4 5 0

C 4 9 0
C 5 3 0

S o d i u m
f l u o r e s c e i n

R 6 G

R 1 0 1

O x a z i n e  1

D E O T C - P
H I T C - P
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t=
2 L
c

=
2⋅1 .5m

3⋅108 m
s

=10−8 s=10000 ps

L

elektrooptikus

móduscsatoló
electro-optic 
modulator

electro-optic modulator: refraction 
coefficient is changed when voltage 
applied, after each t period it lets a 
short pulse to reflect from the mirror. 

E.g.,

Mode-locking 

Laser radiates at a number 
of different frequencies:
these modes have random 
phases relative to each 
other. It is possible to lock 
their phases together (see 

Atkins). 

2L/c
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Synchronous pumping

A mode-locked, non-tunable laser is employed to pump 
another laser of the same optical cavity length.

Advantage: - tunable

- much shorter pulses

E.g.: the pulsewidth of the mode-locked argon laser is 300 
ps, which is reduced to 10 ps when pumping a dye laser.
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Properties of the laser beam

They are superior in many aspects to those of the light 
produced by conventional light sources.
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Power density

High power density within a small region.

Typical diameter of a laser beam is 1 mm2.

The power of laser beams varies from the mW to the kW region.
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High degree of collimation 

The diameter of a laser beam does not change significantly 
even at 100 m from the source (very nearly parallel front and 
back mirrors )
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Spectral linewidth

Very thin linewidth, especially for gas lasers, e.g., that for 
the 514.5 nm light of the argon laser is 10-4 nm.
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Short pulses

The pulse lasers generate pulses in the s (ruby laser, 
Nd:YAG laser) or ns (N2 laser) range.

Picosecond and femtosecond pulses are generated by mode-
locked lasers.
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Tuning the frequency of lasers
• dye laser

• non-linear materials (non-linearity is typically observed 
only at very high light intensities)

- harmonic generation (2, 3, 4)
- frequency conversion ( = 1 + 2)

resonator

optical parametric oscillator 

Tunable by 
changing the 
orientation or
the temperature. 



198

Raman scattering
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Interactions of the photons and 
molecules

• absorption
• emission
• stimulated emission

• elastic scattering

• inelastic scattering
• ionization 
• etc.
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Rayleigh scattering

Elastic scattering of light by molecules.

Elastic scattering involves no (or very small) loss or gain of 
energy by the radiation.

Application: determination of particle size in colloids.

Blue sky and red sunset: I∝
I o
λ

4
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Raman scattering

Inelastic scattering of photons by molecules.

The energy of both the photon and the molecule is changed:
- the molecule absorbs energy: Stokes scattering 
- the molecule loses energy: anti-Stokes scattering

Rotational, vibrational, and electronic levels may all be 
involved in Raman scattering.
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Sir CHANDRASEKHARA 
VENKATA RAMAN (1888-1970)
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The Raman scattering process

E 1 E 1

E 2 E 2

E v i r t u á l i s E v i r t u á l i s

( a )   S t o k e s ( b )   a n t i - S t o k e s

                                      
Evirtual Evirtual
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The Raman spectrometer

J e l f e l d o l g o z ó
e l e k t r o n i k a

F o t o e l e k t r o n s o k s z o r o z ó

F o l y t o n o s  l é z e r

K é t r á c s o s
 m o n o k r o m á t o r

M i n t a

S t o p

continuous laser sample

photomultiplier            

signal-processing 
electronics 

monochromator 
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Selection rules

They differ from those for the absorption and emission spectra:

In the case of the Raman scattering the induced dipole moment is 
considered (not the permanent!).

μind=α⋅E : polarizability tensor

: electric field

α

E

μperm=q⋅d
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Polarizability tensor

α=(
α xx α xy α xz

α yx α yy α yz

α zx α zy α zz
)

 symmetric tensor, that is, xy = yx, xz = zx, and yz = zy
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Rotational Raman spectra of N
2

In contrast to conventional rotational spectroscopy, 
molecules without permanent dipole moment also have 
allowed rotational transitions.
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Vibrational Raman spectra

a)

 

only one normal vibration can be excited

b) Analyzing the

transition moment it can be proven that the irrep of the normal 
mode must be identical to that of any component of the 
polarizability tensor .

∫
−∞

+∞

Ψν '
∗
μ̂ind Ψνdτ

Δv i=±1 ,
Δv j≠i=0

Selection rules:
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Character table of the C2v point 
group

C2v E C2
1
( z ) v(xz) v(yz)

A1 +1 +1 +1 +1 Tz,xx,yy,zz

A2 +1 +1 -1 -1 Rx,xy

B1 +1 -1 +1 -1 Tx,Ry,xz

B2 +1 -1 -1 +1 Ty,Rz,yz
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The infrared and Raman spectra 
are complementary

The IR-forbidden vibrations may be active in the Raman 
spectrum and vice versa.
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The vibrational spectrum of 
crotonaldehyde

IR spectrum

Raman spectrum

s-trans-crotonaldehyde
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Vibrational wavenumbers of crotonaldehyde
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Advantages of Raman spectroscopy

• aqueous solutions can be used (the absorption of water is 
strong over almost the entire IR range, but its Raman 
scattering is weak)

• non-destructive technique (The solid sample does not need 
to be ground with KBr and compressed to a pellet or to 
dissolve, only to place in the path of the light.)

• resonance Raman-effect (The wavelength of the exciting 
laser is within the electronic spectrum of a molecule. In 
that case the intensity of some Raman-active vibrations 
increases dramatically. Colorful components can be 
detected at low concentrations, e.g., in biological samples.)
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Two-photon absorption

Rotational, vibrational, or electronic transitions when two photons 
are absorbed by the molecule. Its probability is sufficiently larger if 
the concentration of photons is high. It can be induced by pulse 
lasers, but not by conventional light sources, and continuous lasers. 

Most often, the two-photon absorption is used in electronic 
spectroscopy.
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Energy levels in two-photon 
absorption

single tunable laser two lasers
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Detection methods for two-photon absorption

E 1 E 1

E v i r t E v i r t

E 2 E 2

 a  a

 a

 a  a

( a ) ( a )

F l u o r e s z c e n c i a

I o n i z á c i ó s  k o n t i n i u m

Fluorescence     

Ionization continuum 
    

(b)(a)

The 2-photon absorption is a small perturbation 
wrt the background.

Either the total fluorescence intensity or the number of ions is proportional to 
the 2-photon absorption. 
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Selection rules

They are different from those of the one-photon absorption.

They are similar to those of the Raman scattering.

The irrep of the wave function of the final state must be identical 
to that of any component of .

Explanation: Raman scattering
Two-photon absorption

One-photon absorption 
Spontaneous emission

Two-photon processes

One-photon processes}

}
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Applications 1
1a) Investigation of transitions which are forbidden in one-
photon absorption (because of the different selection rules)

1b) In the electronic spectrum transitions in the far UV range can 
also be observed. For instance, instead of the absorption of a 
photon of 150 nm, the transition can be induced by two photons 
of 300 nm.
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Applications 2

2) High-resolution spectroscopy: elimination of the 
Doppler broadening of spectral lines.

The consequence of Doppler effect:

ν '=ν (1±
v
c
)
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Elimination of Doppler 
broadening

ΔE=2ν (1+ v
c )

ΔE=ν (1+ v
c )+ν (1−

v
c )=2ν
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Two-photon spectrum of 1,4-difluorobenzene



222

Applications 3
3. Two-photon microscopy

The laser beam is focused onto the sample, due to the high photon 
density, two-photon absorption takes place, which is indicated by 
fluorescence. This is what is detected.

Advantage: the sample does not absorb at the wavelength of the 
exciting light (in one-photon absorption), therefore

- thick layers can be studied,

- the destruction caused by the light is low
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Example: two-photon microscope image of ant cells
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Flash photolysis

The concentration of excited-state molecules most often 
decreases according to first-order kinetics:

[M*] = [M*]0exp(-kt)

 = 1/k characteristic time
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Triplet state

T1 
= 10-6-100 s

there is time for chemical reactions

Instrument:

simple pulse laser

+ photodiode or photomultiplier

+ electronics (oscilloscope)

Experimental method: flash-
photolysis  

S0 S1 T1
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Flash photolysis I

a) measurement of transient
absorption

continuous
source
(lamp)

grating 

sample

stop

detector

frequency-
doubling 
crystal 

Nd:YAG pulse laser

amp-
lifier

trig-
ger

oscilloscope

1064 nm 532 nm or
355 nm or
266 nm
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Flash photolysis II

b) measurement of transition 
emission (fluorescence) frequency-

doubling 
crystal 

sample

stop

detector
   grating

oscilloscope 

amp-
lifier

trig-
ger

Nd:YAG pulse laser
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Decay of the triplet state of a porphyrin molecule dissolved 
in the lipid bilayer of a phospholipid vesicle in the presence 
of oxygen

Time (s)  



229

v e z i k u l a

F o s z f o l i p i d
k e t t õ s r é t e g

H i d r o f ó b  s z e n z i b i l i z á t o r

Idealized structure of a phospholipid vesicle with the most
probable location of the probe molecule.

vesicle

phospholipid 
bilayer

hydrophobic sensitizer       
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Absorption spectrum of triplet antracene
A: in hexane
B: in a phospholipid vesicle at 25 oC
C: in a phospholipid vesicle at 18 oC

wavelength (nm)  
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The pump and probe experiment



234

Singlet states

S1
 10-11-10-8 s

there is no time for chemical 
reactions

Instrument

mode-locked laser

+ fast photodiode or 
photomultiplier 

+ electronics (lock-in amplifier)

Experimental method: pump and 
probe experiment

S0 S1 T1
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a r g o n l é z e r

R 6 G  f e s t é k l é z e r

D C M  f e s t é k l é z e r

f é n y -
o s z t ó

s a r o k t ü k ö r

d i k r o i k u s
t ü k ö r

m i n t a

d e t e k t o r

p u m p a s u g á r

p r ó b a s u g á r

1 0 - 2 0  p s

1 0 0 0 0  p s

The pump and probe experiment

DCM dye laser

argon laser

R6G dye laser

beam 
splitter

pump beam

probe beam

sample

detector

corner mirror

dichroic

mirror 
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Decay of the transient absorption of Nile Blue

solvent: ethyleneglycol

 temperature:     20 C
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The transient absorption is the 
resultant of several factors:

- bleaching: decrease of the population of the S0 
state (the intensity of the probe beam increases)

- stimulated emission: increase of the population of 
the S1 state (the intensity of the probe beam 
increases)

- S1  S2 absorption: (the intensity of the probe 
beam decreases)
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ENERGY LEVELS OF NUCLEI
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The nuclear shell model
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Nuclear shell model
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The angular momentum of 
nucleons due to spin

|⃗S( proton )|=|⃗S (neutron )|=|⃗S (electron )|=√S (S+1)ℏ

(Protons and neutrons are particles of 1/2 spin like the 
electrons.)

S=1/2
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Nuclear shell model

• used for the description of quantum states of the 
nuclei

• it is similar to the model applied to polyatomic 
molecules, which introduces the electron shells.
(It is more complicated, because there are two types 
of nucleons.)
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Characterization of the quantum states of the 
nuclei

(Results of the nuclear shell model)

The states of the nuclei are characterized by 
two quantum numbers:

- I: nuclear spin quantum number

- MI: nuclear magnetic quantum number
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I is defined by the atomic number and the mass number. 

MI : values of the nuclear spin quantum number :

MI = I, I-1, …, -I.

atomic number mass number    possible values of I 
even             even         it is zero
even           odd                half-integers (1/2, 3/2, 5/2…)
odd                         even                integers (1,2,3…)
odd                   odd                half-integers (1/2, 3/2, 5/2…)

Nuclear quantum numbers 

I: nuclear spin quantum number
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Energy of nuclei 

Without magnetic field it depends on I and it is 
degenerate (MI-fold degeneracy).

In magnetic field this degeneracy is lifted.
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Excitation of nuclei 

• Mössbauer effect: I is modified, excitation 
with gamma-photon

• Nuclear magnetic resonance: MI is modified 
(in magnetic field), excitation with radio-
frequency pulse
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Mössbauer-effect

- Transition involves the change of nuclear spin 
quantum number I. 

- Large energy -radiation

- Recoilless nuclear resonance fluorescence

- Vary narrow linewidth small energy shifts 
correspond to large 
changes in absorbance
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Mössbauer effect
Radiation source: 
compounds containing the same type of nuclei which are under 
investigation in the sample 

excited state
ground state

Excited nuclei of the compounds serves as a radiation source appear 
from radioactive decay.
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Example:  Mössbauer-absorption of 57Fe-
nucleus using 57Co isotop as the radiation 

source 

Electron capture (K-capture)

Z
A X+e−→Z−1

A X '+νe
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Mössbauer-spectroscopy

• Mössbauer-effect can be utilized in the structural 
chemistry. 

• Roughtly the half of the chemical elements of the 
periodic system can be studied using the Mössbauer-
spectroscopy. 

• There is a need for a radioactive parent (nucleus with 
atomic number one unit greater)  which dacays to the 
excited state of the investigated nucleus. 

• Some frequently studed nuclei: 57Fe, 119Sn, 121Sb, 125Te.
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Experimental technique 

Tuning of the source of  -radiation using Doppler-effect:   The 
radiation source is moved wrt the sample.  

Absorption is measured while changing v systematically. 

Detector: intenzity of the -radiation is measured by a NaI 
crystal. The -photon can strip an electron from one of the 
I- ion of the NaI crystal. The current is detected. The 
current is amplified by an electron multiplier. 

ν '=ν(1±
v
c )
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Properties of spectra

• Chemical shift:  the absorbed frequency is characteristic 
to the nuclei but it also depends slightly on the electronic 
density of surrounding atoms, thus the spectrum contains 
information about the molecular structure as well. 

• Quadruple splitting: the quadruple moment is a property 
of charge distribution. If the nucleus has a quadruple 
moment (the charge distribution is not spherically 
symmetric) than the energy levels (belonging to quantum 
number I) are split. 

• Magnetic splitting: in magnetic field the energy of states 
characterized by quantum number I are broken according 
to MI. Observable: 
– in external magnetic field 

– in internal magnetic field (e.g., in ferromagnetic material) 
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Fe3(CO)12 – Mössbauer spectra

- 0 , 3 - 0 , 2 - 0 , 1 0 0 , 1 0 , 2 0 , 3

4 , 5

5 , 0

T r .

v  m m  s - 1

F e

C O

According to the 
chemical environment 
two peaks are expected
with 2:1 intensity. 

Two excited levels due to 
the quadruple spitting 
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“With MIMOS II, besides other minerals the Fe silicate olivine has been identified in both soil and rocks at 
both landing sites. At the Meridiani site the Fe sulfate jarosite has been identified by MIMOS II which is 
definitive mineralogical proof of the presence of water at this site in the past.” (Hyperfine Interactions (2004) 
158:117–124)
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Applications in structural chemistry 

• Metal complexes 

• Corrosion – the atoms in the different 
oxidized state affected by different 
chemical shifts

• Magnetic alloys (internal magnetic field) 
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Nuclear magnetic resonance 
spectroscopy (NMR)
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Absorption of nuclei in magnetic 
field

Without magnetic field it is I dependent,
degenerate according to MI 

In magnetic field: energy of states depend on I 
and MI

Mössbauer effect

Nuclear magnetic resonance 
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Magnetic nuclear resonance

Transition with changing 
MI and constant I value. 

Magnetic field is needed!

Absorption of radio wave radiation

magnetic field
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Nuclear spin, angular momentum, and 
magnetic moment

Eigenvalues of the        and       operators:  

g : „Lande-factor”
n : Bohr-magneton of nucleus

       (nuclear magneton)
mn : mass of nucleus

μn=
eℏ

2mn

L̂2 L̂z ℏ2 I (I+1)  and ℏM I

Eigenvalues of the        and       operators:  M̂ 2 M̂ z g2 I ( I+1)μn
2  and gM Iμn

Nuclear spin Nuclear magnetic moment

M
I
=-I,-I+1, … ,I



260

Potential energy of a particle with magnetic 
moment

Classical physics:

In magnetic field oriented in the direction of z axis,

In quantum mechanics: 

V=−M⃗⋅B⃗ B⃗ : magnetic induction

V=−M z
|B⃗|

M z
=gMI μn

V=−gMI μn|B⃗|
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Most frequently investigated nuclei 
in NMR spectroscopy: 1H, 13C

Atomic 
number

Mass 
number

I (ground 
state)

MI g-factor

1H
even odd 1/2 +1/2, -1/2 5.586

13C
even odd 1/2 +1/2, -1/2 1.405
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Splitting as a function of 
magnetic field

ΔE=gμn|B⃗|=hν

|B⃗|

MI = -1/2

MI = +1/2

EEnergy of 

MI = +1/2 state:

Energy of 

MI = -1/2 state: 

E1=−
1
2

gμn|B⃗|

E2 =+
1
2

gμn|B⃗|
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Transitions between the nuclear 
states of 1H and 13C  

MI = +1/2                  MI = -1/2

The transition is allowed! 

Energy of absorbed photon: 

ν=
ΔE
h

=
gμn|B⃗|

h

ΔE=gμn|B⃗|=hν
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Absorption NMR frequencies of 
nuclei

In |B⃗|=1T  magnetic field 

Nucleus   Natural                   I (ground state)    (MHz)  
                occurrence(%)

                        
1H     99.98           1/2                 42.58
11B     81.17           3/2     13.66
13C             1.11                     1/2     10.70
19F   100.0           1/2                 40.06
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Properties of NMR spectra I  
Chemical shift
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1H NMR spectrum of Ethylbenzene 
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Chemical shift

Chemical shift: the characteristic atomic absorption (emission, 
ionization) frequency is slightly modified by surrounding 
molecular enviroment. 

Detectable: 

• XPS (ionization energy of atomic core)

• Mössbauer-effect (changing of nuclear energy due to the 
absorption of a -photon)

• Magnetic nuclear resonance (transition between magnetic 
energy levels due to absorption of radio wave radiation)
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Chemical shift in the NMR 
spectrum

In the magnetic field electrons around a nucleus will circulate  
and create a secondary induced magnetic field. 

Due to the chemical shift the absorption frequency is 
modified: 

B⃗lok=B⃗(1−σ )

ν ,=
gμn|B⃗|(1−σ )

h

σ

σ

σ : sheltering coefficient
positive: diamagnetic sheltering
negative: paramagnetic sheltering 
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In the NMR-spectrum the “relative change” wrt a reference 
absorption frequency is given: 

δ=
ν ,
−ν0

ν0

δ : chemical shift
(the phenomenon is

also called chemical 
shift!)Choosing the 

0
 

theoretical possibility:  of an isolated 
nuclei 

practical solution:  of an atom of a chosen 
compound

Most frequently applied reference 
molecule: Tetramethylsilane (TMS)

advantage of TMS: single absorption signal 
for both 1H and 13C 

CH3
Si
CH3

CH3CH3

Chemical shift δ is 
usually expressed in 
parts per million (ppm) 
by frequency 

δ
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An advantage of   to : it is independent of magnetic field

Examples:

How many spectral lines can be found in the H1 NMR 
spectrum of isopropanol or in the spectrum of acetone?

The set of chemical shifts of nuclei 1H, 13C is characteristic 
property of the functional groups.



271271

http://www.mhhe.com/physsci/chemistry/carey/student/olc/graphics/carey04oc/ch13/figures/hiproh.gif
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F é m - C H 3
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A r - C H 3

A r - C - CH 2

A r - C - O -H 2

A r - C - NH 2

C - Ht e r c

C - H

C - C - CH 2

C - C - NH 2

C - C - O - A rH 2

C - C - C O -H 2

C - C - O -H 2

= C -H

A r H

- C O - N - CH

- C O O H

R - C OH

R - O H

1 3

1 3

1 2

1 2

1 1

1 1

1 0

1 0

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

- 1

- 1

- 2

- 2

1H chemical shifts



273

S i ( H )C 3 4

- H XC 2

- H - O -C 2

C H - C3

C H - N3

C H - O -3

- H - NC 2

C C-

C H - N

C H - O -

C - N

C - O -

C =

- O O RC

- O O HC

R - H OC

- O -C

- C 

- NC     
C A r

0

0

5 0

5 0

1 0 0

1 0 0

1 5 0

1 5 0

2 0 0

2 0 0

13C chemical shifts
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Properties of NMR spectrum II
spin-spin coupling

Spin-spin coupling: interaction between the magnetic 
moments of the NMR-active nuclei of molecule. 

          Splitting of NMR bands. 
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Example:

In the  13C spectrum peaks with 1:2:1 relative intensities due to 
the interaction of 13C and the two 1H nuclei. 
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The energy of  13C in the CH2 group with the spin-spin coupling: 

E=−g
13C M I

13C μn

13 C|B⃗|+JCHM I

13 C (M I
H1+M I

H2)

JCH : C-H coupling constant 

Excitation: M I
C=+

1
2
→M I

C
=−

1
2

ΔE=g
13 C μn

13 C|B⃗|+JCH(M I
H1+M I

H2 )

MI
H1 MI

H2 ECH

+1/2 +1/2 + JCH

+1/2 -1/2 0
-1/2 +1/2 0
-1/2 -1/2 - JCH
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Coupling constant depends on 

• the type of interacting atom pair (e.g., 1H-1H, 
1H-13C, 1H-19F, 13C-13C coupling)

• the atomic distance

• the type of chemical bound

It does not depend on the magnetic field!
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Units of coupling constant:

JCH/h, JHH/h, JCC/h, etc.

[Hz]
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Chemically equivalent nuclei:

- they are related by a symmetry operation of the molecule   
              (same chemical shifts)

e.g., - 3 protons of CH3,

- 2 protons of CH2.

Magnetically equivalent nuclei: 

- Nuclei are magnetically equivalent if they have identical spin–
spin interactions with any other nuclei in the molecule. 
Magnetically equivalent nuclei are chemically equivalent as well.

- Due to the rapid internal rotations the protons of the CH3  group 
can be magnetically equivalent.  
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Difluoromethane and Vinylidene fluoride  

The two H atoms are symmetrically 
connected to both F atoms, they are 
magnetically equivalent.

The two H atoms are chemically equivalent,
but magnetically not.  
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Interpretation of NMR spectrum 

Based on the chemical shifts and the spin-spin coupling

1st order spin-spin coupling: chemical shifts are much larger 
than the value of the spin-spin coupling constant. Simple 
interpretation. 
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1H NMR spectrum of the Ethylbenzene 

In the simplest cases (lin. 
molecules) the intensities 
are proportional to the 
number of nuclei
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Rules of spin-spin coupling in the 
1H NMR spectra

• Interaction of magnetically equivalent protons bounded 
to the same carbon does not cause splitting.
 

• The spin-spin interaction between protons of 
neighboring carbons do cause well-detectable splitting.
 

• Interaction between protons far from each other is weak 
in the case of aliphatic compounds. The splittings due to 
these weak interactions are detectable only in high 
resolution measurements. Interactions of protons 
connected by conjugated C-C bounds is stronger. 
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1H NMR spectrum of Ethylbenzene 

MI
H1 MI

H2 EHH

+1/2 +1/2 JHH

+1/2 -1/2 0
-1/2 +1/2 0
-1/2 -1/2 - JHH

Splittings in the spectrum of the CH3  group (due to the CH2 
group)

ΔE=g
1 H μn

1 H|B⃗|+J
H1 H2(M I

H1+M I
H 2)

1:2:1
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 1H NMR spectrum of  Ethylbenzene 

MI
H1 MI

H2 MI
H3 EHH

+1/2 +1/2 +1/2 +3/2 JHH

+1/2 +1/2 -1/2 +1/2 JHH

+1/2 -1/2 +1/2 +1/2 JHH

-1/2 +1/2 +1/2 +1/2 JHH

+1/2 -1/2 -1/2 -1/2 JHH

-1/2 +1/2 -1/2 -1/2 JHH

-1/2 -1/2 +1/2 -1/2 JHH

-1/2 -1/2 -1/2 -3/2 JHH

Spitting of the band of CH2 group ( due to CH3 group)

1:3:3:1

ΔE=g
1 H μn

1 H|B⃗|+J
H1 H2(M I

H1+M I
H 2)
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The chemical formula of molecule can be 
obtained from the NMR spectrum. 
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Spin-spin interactions in the 13C spectra

The bands of 13C atoms are splitted by their hydrogen 
neighbors. 

CH group 1:1 doublet

CH2 group 1:2:1 triplet

CH3 group 1:3:3:1 quartet 

MI
H1 MI

H2    EC

+1/2 +1/2 JCH

+1/2 -1/2  0
-1/2 +1/2 0
-1/2  -1/2   -JCH

ΔE=g
13 C μn

13 C|B⃗|+JCH(M I
H1+M I

H2 )
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13C NMR spectrum of 1,3-butanediol 
(with and without proton decoupling) 

A strong, resonant 
radiofrequency pulse is 
used to excites the H 
nuclei.  

All proton couplings 
have been removed
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NMR spectroscopy

In most of the cases solutions are studied. 

Deuterated solvents: chloroform-d (CDCl3), aceton-D6 (To 
avoid the absorption of protons, 1H of the solvent are replaced 
by deuterium.)

TMS is also added.
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The NMR signal is weak
1H

|B⃗|=1T
N (M I=−

1
2
)

N (M I =+
1
2
)

=0,999993

Reason: small excitation energy

The probability of the absorption and induced emission is 
almost the same. 

Due to the excitations during the measurement shift this 
ratio  closer to one. 

Relaxation processes: nuclei return to the ground state in 
non-radiative processes.

t = 25oC
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NMR spectrometer 

The difference in resonance 
frequencies increases with B, 
but spin–spin coupling
constants are independent of it.

Strong magnetic field:
Many 1st order details

Pulse techniques in NMR:
FT-NMR
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Excitation pulse sequence and its Fourier transform in 
FT-NMR
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a) Free induction decay (FID) courve of ethylbenzene in 
deuteroacetone solution b) Fourier transform 13C-NMR 
spectrum

TMSfed
a

b,c



294

Magnetic resonance imaging



295
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Mass spectrometry (MS)

• Separation of isolated, ionised particles 
according to the mass/charge ratio 

•  Main elementes of the mass spectrometer: 

Ion source
Mass 
analyzer Detector

Ion 
accelerator
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Single-focus mass spectrometer 

Magnetic field
Ion source

Detector slit

Slit
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Single-focus mass spectrometer:

Sample is ionized, ions are accelerated in 
electric field than separated in magnetic field. 

Mass and charge of particles: m, e.

Voltage of acceleration: U 

1
2

mv 2
=eU v 2

=
2eU
mA kinetic energy: 
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Magnetic field is homogeneous 

(The magnetic field is perpendicular to the 
velocity of entering particles.)

Lorentz force:

F⃗=e⋅v⃗×B⃗

e [As]: ionic charge 
v [m/s]: speed of the ion 
B [Tesla = N/Am = Vs/m2]: magnetic field 
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B: perpendicular to the sheet. 

 Circular motion due to the force perpendicular to 
the velocity (centripetal force). 

F
 +

current
magnetic field

force

Right-hand rule
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mv2

r
=B⋅e⋅v

v=
Ber
m

v 2
=

2eU
m

v 2=
B2e2r2

m2

m
e
=

B2r2

2U
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Separation of charged particles in magnetic field 

larger

smaller

slit

slit
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Methods of ionization 

a) Electron collision ionization 

M+e−→M+
+2e− (positive  ion) 

M+e−→M−
(negative ion) 

The positive ions are more stable. 
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Fragmentation

The ions can further dissociate in parallel 
and consecutive reactions:

 

M+
→A+

+B+. ..
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b) Chemical ionization: large quantity 
reagent gas (CH4, NH3, isobutan). 

Mainly the reagent gases are ionized (most

of the are MH+) and collide the investigated 
molecules.  

The spectrum is relatively simple. 
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c) Secondary Ion Mass Spectrometry, SIMS 

Solid sample is bombarded by Ar+ or O2
+ ions. 

Atoms and ions leave the surface. 

Method for investigation of surfaces.  
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d) Fast Atomic Bombardment (FAB) 

Non volatile sample  

The sample is dissolved (e.g., in glycerol). 

Bombardment with neutral atoms (Ar, Xe) 

FAB can be applied for the study of biological 
and medical sample.  
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Electrospray Ionisation (ESI)

3000 V

Biological macromolecules
in ionic vapor 

Ion formation involves extensive solvent 
evaporation.

e)
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MALDI = matrix-assisted laser desorption-ionisation 

matrix: aromatic acid The sample is dissolved in a 
matrix material and applied 
to a metal surface.

A pulsed laser irradiates the 
sample, triggering ablation and 
desorption of the sample and 
matrix material. 

The target molecules are 
Ionized.
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resolution: 

M is the molar mass of ion, M is the smallest 
detectable difference between two atomic mass 
values.   

E.g., if the resolution is 500 than
     molecules with 1000 and 1002 atomic mass values can be        
     separately detected, but the difference between 1000 and         
     1001 atomic mass values can not be seen. 

M
ΔM
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 Mass spectrometer configurations

Typical mass analyzers

a)  Single-focus mass spectrometer (res:~100-
1000)

b)  Tandem mass spectrometry (res:~10000-
100000)

c)   Quadropul mass analyzers (fast!, res:~1000)
d)  Time-of-flight spectrometry 

Detector: electron multiplier  
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Applications of MS
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 a) 

Molar mass  

Quantitative analysis of gas mixes. 

Identifying unknown compound

Can be combined with 
gaschromatograpy (GC-MS)

Isotopic composition  

Analytical tool
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 b) Structure of molecules

Types of peaks:

Molecular peaks

Fragment peaks M+A++B

Multiply charged peaks
M
2e

M
3e

Metastabe peaks (short living ions)
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Thiophene

Relative 
intensity

4*1+4*12+32=84
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n-butane

re
la

ti
v e

 a
bu

n d
an

ce

10*1+4*12=58
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n-butane

1) peak at m/e=58 has a relativelly small intensity

2) peak at m/e = 43 has the highest probability: 
    58-43 = 15, i.e., the CH

3
 group has removed and the 

C3H7
+  ion is detected

3) small peak at m/e = 59, it is caused by the 13C or 2H 
isotopes (satelite peaks)

4) C2H5
+ / C4H10

2+ have the same m/e=29 value

5) m/e = 25.5,  2*25.5=51, doubly charged ion.
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 c) Application in physical chemistry 

Ionization potentials, molar heat of fragments, 
dissociation energies, reaction kinetics

Intensity is measured as a function of the energy 

of the bombarding electrons. 



319

X-ray diffraction

X-ray diffraction pattern
(reflections), protein sample 
(crystal)[wikipedia]
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Molecular geometry 

 Bound distancies, bound angles

 Conformation

 Configuration of chiral centers 
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Methods for determining molecular 
geometry

 Gas sample: microwave spectroscopy

         rotational Raman-spectroscopy

 Solution: (NMR, conformation)

(CD-spectroscopy, chiral centrums)

 Crystals: X-ray diffraction
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Perfect crystals
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Primitive cell

Lattice parameters:

a, b, c : edges

, , : angles.

Parallelepiped
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Crystal structures

Crystal structures Num. of independent 
parameters

Parameters

triclinic 6 a b c,     

monoclinic 4 a b c,  =  = 90  

orthorombic 3 a b  c,  =  =  = 90

tetragonal 2 a = b  c,  =  =  = 90

rhombohedral 2 a = b = c,  =  =   90

hexagonal 2 a = b  c,  =  = 90,  = 120

cubic 1 a = b = c,  =  =  = 90
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Position of an atom in the primitive cell

r⃗ n=xn a⃗+ yn b⃗+ zn c⃗

NaCl crystal
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Crystal lattice 
Lattice point: assigned to one or more atoms, molecules, or 
ions. 

Translation vectors which shift the lattice points to equivalent 
lattice points:

t⃗=n1 a⃗+n2 b⃗+n3 c⃗

a⃗ , b⃗ , c⃗ : elementary translation vectors which keep the 
lattice invariant. 

n1, n2, n3 : integers 
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The X-ray diffraction experiment

Aim of a X-ray diffraction measurment:
 to obtain the crystal structures, i.e, to access

- the parameters of the primitive cell 

- the positions of atoms in the primitive cell 
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The X-ray diffraction
On the crystal sample the X-ray radiation scatters ellastically. The 
interference of scattered radiation can be detected. 

(The wavelenght of the X-ray radiation is comperable to the lattice 
parameters a, b, c leading to interference picture.)

Most important methods: 
- methods to obtain the lattice parameters: 

 Debye-Scerrer method : monochromatic radiation scatters on 
powder sample

 Laue method: polychromatic radiation scatters on powder 
sample 

- to have the lattice parameters and the atomic positions
 rotating crystal method: monochromatic radiation scatters on 

crystals 
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The X-ray radiation scatters on the electrons. 

Scattering on the nuclei is negligible. 
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c é l  t á r g y
( C u )

m o n o k r o m á t o r

n a g y  e n e r g i á j ú
e l e k t r o n o k

f ó k u s z á l t
r ö n t g e n s u g á r

- k ő r










d e t e k t o r f e l ü l e t

X-ray diffraction instrument for rotating crystal 
experiments 

detector

monochromator

target (Cu)

high energy 
electron beam

X-ray radiation

Eulerian cradle
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Lattice parameters
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BC=CD=d sin θ

Reflection from two atomic crystal layers 
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Condition of constructive interference 

BC+CD=2d sin θ=nλ Bragg equatition
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Example: orthorombic crystal

d = a

2a sin θ1
a
=λ

2a sin θ2
a
=2 λ

2a sin θ3
a
=3 λ

….
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Example: orthorombic crystal 

d = a

2a sin θ1
a
=λ

2a sin θ2
a
=2 λ

2a sin θ3
a
=3 λ

….

d = b

2b sin θ1
b
=λ

2b sin θ2
b
=2 λ

2b sin θ3
b
=3 λ 2c sin θ3

c
=3 λ

2c sin θ2
c
=2 λ

2c sin θ1
c
=λ

d = c

…. ….

Bragg equation 
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a

b

(100) (010)

Example: orthorombic crystal

Lattice plain I. 
(Miller indices) 
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(110) (210)a

b

Example: orthorombic crystal

Lattice plain II.
(Miller indices)
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1
dhk ℓ

2
=

h2

a2
+
k2

b2
+
ℓ2

c2

Example: orthorombic crystal

Distance of lattice plains

2dhkl sin θ=λ

When not all the lattice angles are 90o than dhkl 
depents on the lattice angles too. 
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The lattice parameters can be 
obtained from the directions of the 
diffraction maxima (reflections). 

At most 6 parameters: 6 reflections is enough to 
determine the lattice parameters. 
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Atomic positions 
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The atomic positions can be obtained 
from the relative intensities of 

reflections.



342

Intensities 

1. Model: spherically symmetric atoms (effect of valence 
electrons is neglected).  
Steps of derivation: 

1.a Scattering on an isolated atom

1.b Scattering on primitive cell 

1.c Scattering on 3D crystal 

2. Model: distribution of electrons is not spherically symmetric
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Intensity of the scattering on a crystal of 
spherically symmetric atoms 

I=|Fhk ℓ|
2

Fhk  is (hk) scattering amplitude of the 
plain, it is the so-called structure factor. 

For a set of particle it is a sum of scattering amplitudes 
times a phase factors: F=∑i

f i exp( iϕi)

  quantities describe the phase differences due to the different
optical path lengths. 
ϕi
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Structure factor

Fhk ℓ=∑
n

f nexp [2iπ (hxn+kyn+ℓzn) ]

xn, yn, zn are the atomic coordinates of the primitive cell 

fn is the scattering factors of the nth atom. 
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atomic scattering factors as functions of sin(θ)/λ

Atomic scattering factor

ƒ(θ)=4π∫
0

∞

ρ (r )
sin (kr )

    kr
r 2 dr

k=
4π
λ

sinθ

ƒ=∫ ρ (r ) exp ( i ϕ(r) )d τ

Spherically symmetric
charge distribution is
 supposed 
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I=|Fhk ℓ|
2

Fhk ℓ=
V

a⋅b⋅c
∫
0

a

∫
0

b

∫
0

c

ρ (x,y,z ) exp [2iπ ( hx+ky+ℓz ) ] dxdydz

Scattering intensity of primitive cells 
with contiguous electron density
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Ni-Phthalocyanine 
electron density map 


