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mization algorithm is required and, in particular, the SQP algorithm must be adapted for

this case. Finally, section 9.6 concludes the chapter and provides guides for further read-
ing. Several process examples are also used to illustrate the concepts in this chapter.

9.2 INTRODUCTION TO CONSTRAINED NONLINEAR PROGRAMMING

We consider the nonlinear programming problem, given in general form as:

Min  f(x)
%
st gx)<0 &1
hx)y=0

where x is an n vector of continuous variables, f{x) is a scalar objective function, g(x) is an
m vector of inequality constraint functions, and h(x) is an meg vector of equality con-
straint functions. These constraints create a region for the variables x, termed the feasible
region, and we require n = meq in order to have any degrees of freedom for optimization.
While Eq. (9.1) will be our standard form for nonlinear programs, the NLP problem can
be expressed in a number of different ways. For instance, the signs of the objective func-
tion and constraint functions could be changed so that we have:

Max  ¢(x)
X
st owx)=0 ©.2)
hix)=0
for functions defined by g(x) = — f(x) and w(x) = — g(x). Properties of this nonlinear pro-

gram (NLP) are summarized in Appendix A. In particular, we will develop methods that
will find a local minimum point x* for fix) for a feasible region defined by the constraint
functions; that is, fix*) < f{x) for all x satisfying the constraints in some neighborhood
around x*. Provided that the feasible region is not empty and the objective function is
bounded below on this feasible region, we know that such local solutions exist.

On the other hand, finding and verifying global solutions to this NLP will not be
dealt with in this chapter. In Appendix A, we see that a local solution to the NLP is also a
global solution under the following sufficient conditions based on convexity. From Ap-
pendix A, we define a convex function ¢(x) for x in some domain X, il and only if it satis-
fies the relation:

o+ (1 —om) <o)+ (1 —o)om) (9.3)

for any o, 0 < o < 1, at all points in § and 1 in X. As derived in Appendix A, sufficient
conditions for a global solution for the NLP (9.1} are that:
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¢ the solution is a local minimum for the NLP
¢ f{x) is convex
e g(x) are all convex

h(x) are all linear

The last two conditions imply that the feasible region is convex, i.e. for all points & and 1
in the feasible region and for all o, 0 € & < 1, the point [0 § + (1 — o) 1] is also in the re-
gion. For process optimization, these properties state that any problem with nonlinear
equality constraints is nonconvex and in the absence of additional information, there is no
guarantee that a local optimum is global if these convexity conditions are not met.

To illustrate these concepts, we consider two nonconvex examples that lead to dif-
ferent kinds of solutions.

EXAMPLE 9.1 Optimal Vessel Dimensions

Consider the optimization of a cylindrical vessel with a specified volume. What is the optimal
L/D ratio for this vessel that leads to a minimum cost?

The constrained problem can be formulated as one where we minimize a cost based on the
amount of material used to make up the top and bottom of the vessel and the sides of the vessel.
For a small wall thickness, the amount of material is proportional to the surface area. The cost
per area for the materials is given by Cyand Cg for the top and sides, respectively. The specifica-
tion for volume is written as a constraint and the NLP is given by: :

; nD?
Min CT—-FCQEDLZCOSL
7 K

D" L (9.4)

5.t V-
D, Lz0

Note that for this problem, the feasible region in the variables D and L is nonconvex, because of
the nonlinear constraint. We can easily eliminate L from this equation and substitute L = 4V/mt D2
in the objective function and describe it using the single variable D. Since the constraints has al-
ready been incorporated into the objective function we need not consider it further and the prob-
lem becomes:

2

D 4y
Min § €, T—+ C — = cost } with D 2 0. (9.5)
2 )

If the optimum value of D is positive, we can find the minimum by differentiating the cost with
respect to 1) and setting this to zero.

d(cost) 4VCy
=CprD - =0 9.6
4D T DZ ( )

Solving for variable D leads to the expression below with L obtained from the volume speci-
fication:
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Moreover, the aspect ratio for the cylinder can be expressed in a compact form: L/D = Ci/Cg If
we further examine the cost function, we see that:
d¥(cost)dDr= Cyn+ 8 V C¢D? >0, for D > 0, (9.8)

and by the definitions in Appendix A, this function is convex over the (open) feasible region for
D. As a result, the solution to this NLP is a global one and no other (local) solutions exist.

In the next example, however, we have multiple solutions due to nonconvexity.

EXAMPLE 9.2 Minimize Packing Dimensions

Consider three cylindrical objects of equal height but with three different radii, as shown in Fig-
ure 9.1 below. What is the box with the smallest perimeter that will contain these three cylin-
ders? Formulate and analyze this nonlinear programming problem.
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B FIGURE 9.1 [Illustration of
Example 9.2

As decision variables we choose the dimensions of the box, A, B, and the coordinates for
the centers of the three cylinders, (x;, ¥,), (X, ¥2), (X3, y3). As specified parameters we have the
radii, R,, Ry, Ry. For this problem we minimize the perimeter 2(A + B) and include as constraints
the fact that the cylinders remain in the box and can’t overlap. As a result we formulate the fol-
lowing nonlinear program:

Min (A + B) (9.9)

Xy, W ZRI xlSB*RI,yISA—RJ
in box X, y22R2 X2587R2,y2 SA—RZ
X3, ¥3 2 Ry X3SB-Ry, y;SA-Ry

2
(x1—%)" + (= y2)” 2R +Ry)
no overlaps § (x; — x3 }2 +(y —y3)2 (R + R_;)2
(xy = 23)° +(p —¥3)* 2 (R, + Ry)?
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Note that the objective function and the “in box” constraints are linear, and hence, convex. Simi-
larly, the variable bounds are convex as well, The nonconvexities are observed in the nonlinear
inequality constraints and this can be verified using the properties in Appendix A (see Exercise
9.1). Because convexity conditions are not satisfied, there is no guarantee of a unique global so-
lution. Indeed, we can imagine intuitively the existence of multiple solutions to this NLP, as fol-
lows:

* Find a solution and observe an equivalent solution by turning the box by 90°.
« Use a random arrangement for the cylinders and manually shrink the walls of the box.
The solution depends on the initial positions of the cylinders.

Consequently, we see that this problem has many local solutions. This is due to a noncon-
vex feasible region.

These two examples raise some interesting questions that will be explored next. First,
whalt are the conditions that characterize even a local solution o a nonlinear program? In
the first ex'amplc, once L was eliminated, the constraints became unimportant. On the
other hand, in the second example, the NLP solution was completely defined by the con-
straints. At the solution, these inequality constraints were satisfied=as equations and were
therefore considered to be active. In the remainder of this section we will present the
Kuhn Tucker optimality conditions to define locally optimal solutions.

Second, the search for NLP solutions is guided by determining the correct active set
of constraints and the solution of equations that represent the optimality conditions. In the
first example this task was easy as no active constraints were considered, and because the
optimal solution could be found analytically from Eq. (9.6). In the second example, we
have yet to consider these tasks. These search strategies will be considered when we de-
velop an NLP algorithm in the next section.

9.2.1 Optimality Conditions for Nonlinear Programming

In the remainder of this section we briefly present and discuss the optimality conditions
for solution of the nonlinear programming problem (1). These are derived in Appendix A
and are presented in detail below. Before presenting these properties, we first consider an
intuitive explanation of the optimality conditions.

Consider the contour plot of f{x) in two dimensions as shown in Figure 9.2. By in-
spection we see that the minimum point is given by x*. If we consider this plot as a
(smooth) valley, then a “ball” rolling in this valley will stop at x*, the lowest point. At this
stationary point we have a zero gradient, Vf{x*) = 0, and the second derivatives reveal
positive curvature of f{x). In other words, if we move the ball away from x* in any direc-
tion, it will roll back.

Now if we introduce two inequality constraints, g,(x) < 0 and g,(x} < 0, into the
minimization problem, we can visualize this as imposing two “fences” in the valley, as
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FIGURE 9.2 Contour plot for unconstrained minimum. - -

shown in Figure 9.3. Again, a ball rolling in the valley within the fences will roll to the
lowest allowable point. However, if x* is at the boundary of a constraint (e.g., g, (x*)=0),
then this inequality constraint is active, the ball is pinned at the fence and we no longer
have Vf(x*) = 0. Instead, we see that the ball remains stationary because of a balance of
“forces™: the force of “gravity” (=Vf(x*)) and the “normal force” exerted on the ball by
the fence (~Vg,(x*)). Also, in Figure 9.3 note that the constraint g,(x) < 0 is inactive at x*
and does not participate in this “force balance.” In addition to the balance of forces, we
expect positive curvature along the active constraint; that is, if we move the ball from x*
in any direction along the fence, it will roll back.

Finally, we introduce an equality constraint, h(x) = 0, into the problem and we can
visualize this as introducing a “rail” into the valley, as shown in Figure 9.4. Now a ball
rolling on the rail and within the fence will also stop at the lowest point, x*. This point
will also be characterized by a balance of “forces™: the force of “gravity” (- Vi(x*)), the
“normal force” exerted on the ball by the fence (~Vg,(x*)), and the “normal force™ ex-
erted on the ball by the rail (-Va(x*)). In addition to this balance of forces, we expect
positive curvature along the active constraints. However, in Figure 9.4, we no longer
have allowable directions that remain on the active constraints. Instead, the ball remains
stationary at the intersection of the rail and the fence—and this condition is sufficient for
optimality.

We now generalize these concepts and develop the optimality conditions for con-
strained minimization. These optimality conditions are referred to as the Kuhn Tucker
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FIGURE 9.3 Constrained minimization with inequalities”

(KT) conditions or Karush Kuhn Tucker (KKT) conditions and were developed indepen-
dently by Karush (1939) and Kuhn and Tucker (1951). For convenience of notation we
define a Lagrange function as:

L(x i, 2 = 00 + 2007 + AT A= 0 (9.10)

Here the vectors L and A act as “weights” for balancing the “forces” shown in Figure 9.4;
W and A are referred to as dual variables or Kuhn Tucker multipliers. They are also called
shadow prices in operations research literature.

The solution of the NLP (9.1) satisfies the following first-order Kuhn Tucker condi-
tions. These conditions are necessary for optimality.

1. Linear dependence of gradients (“balance of forces” in Figure 9.4)

VL (x*, u*, A*) = VAx*) + Vgx¥)u* + Va(x*) A* =0 (9.11)
2. Feasibility of NLP solution (within the fences and on the rail in Figure 9.4)
g (x*) <0, h(x*)=0 (9.12)

3. Complementarity condition; either u* = 0 or g; (x*) = O (either at the fence bound-
ary or not in Figure 9.4)

g () = 0 (9.13)
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FIGURE 9.4 Constrained minimization with inequalities and equalities. ©

4. Nonnegativity of inequality constraint multipliers (normal force from “fence’” can
only act in one direction)

w0 (9.14)

5. Constraint qualification;
Active constraint gradients, i.e.:

[Vg,(x*) | Vh(x*)] forie A, A = {il g; (x*) =0}

must be linearly independent.

The first Kuhn Tucker condition Eq. (9.11) describes linear dependence of the gradients
of the objective and constraint functions and is derived in Appendix A. The second condi-
tion Eq. (9.12) requires that the solution of the NLP, x*, satisfy all the constraints. The
third and fourth conditions Eqs. (9.13, 9.14) relate to complementarity. Here either in-
equality constraint i is inactive (g,(x*) < 0) and the corresponding multiplier is zero (i.e.,
the constraint is ignored in the KT conditions), or, if the constraint is active (gx¥)=0), 1,
can be positive. Finally, in order for a local NLP solution to satisfy the KT conditions, an
additional constraint qualification is required. Constraint qualifications take several forms
(see Fletcher, 1987), and the one most frequently invoked is that the gradients of the ac-
tive constraints be linearly independent.
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These conditions are only necessary, however, and additional conditions are needed
to ensure that x* is a local solution. So far, the first order conditions define x* only as a
stationary point that satisfies the constraints. For instance, in Example 9.1, the KT condi-
tions Eqgs. (9.11-9.14) correspond to setting the gradient of the objective function to zero.
To confirm a local optimum for this example, second derivatives have to be evaluated and
checked to be positive (or at least nonnegative).

For a multivariable problem, the second derivatives are evaluated in terms of a Hes-
sian matrix of a given function. For instance, the Hessian matrix of the objective function,
V /%), is made up of elements: {V, f(x)}; = 9*loxdx; Also, since 0*f1ox,0x; = 9*fldx,0x;,
we have {V, fx)} = [V, /) }ji and the Hessian matrix is symmetric. Moreover, positive
curvature for the contour surface can be evaluated based on the Hessian matrix. For in-
stance, the objective function in Figure 9.2 has positive curvature at x* if its Hessian ma-
trix is positive definite, i.e.:

pIV _fx*)p>0  forall vectors p # 0
or positive semidefinite:
pIV_ fx¥)p20  forall vectors p # 0.

For the constrained NLP problem (1), second order conditions are defined using the Hess-
ian matrix of the Lagrange function and by defining nonzero allowable directions for the
optimization variables based on the active constraints. Starting from the solution x*, the
allowable directions, p, satisfy the active constraints as equalities and therefore remain in
the feasible region. Because, the change in x along this direction can be arbitrarily small,
these directions must also satisfy linearizations of these constraints and are therefore de-
fined by:

Vhx®Tp=0 (9.15)
Vg ) p=0forie A,A={ilg (x*)=0)

The sufficient (necessary) second order conditions require positive (nonnegative) curva-
ture of the Lagrange function in these allowable or “constrained” directions, p. Using the
second derivative matrix to define this curvature we express these conditions as:

pT VL (x*, pu*, &%) p > 0 (sufficient condition)
- o 9.16
pT VL (x*, u*, A*) p 2 0 (necessary condition) )
for all of the allowable directions, p. These second order conditions are also presented in
more detail in Appendix A.

EXAMPLE 9.3 Application of Kuhn Tucker Conditions

To illustrate these Kuhn Tucker conditions, we consider two simple examples represented in
Figure 9.5.



Sec. 9.2 Introduction to Constrained Nonlinear Programming 305

) £ X 2

gy a

FIGURE 9.5 [Illustration of Kuhn Tucker conditions for Example 9.3

First, we consider the single variable problem:
Min x?2 s.r.—a<x<a, wherea >0 (9.17)
where x* = 0 is seen by inspection. The Lagrange function for this problem can be written as:
L, W =x2+ Wy (x—a) + 4y (—a = x) 0 (9.18)
with the first order Kuhn Tucker conditions Egs. (9.11-9.14) given by:
VLG, ) =2 + 1y~ py =0
W x=ay=0 py(-a—x)=0 (9.19)
—a<x<a Wi, My 20

To satisty the first order conditions Eq. (9.19) we consider three cases: [, = L, = 0; 4, > 0, Uy =
0; or L, = 0, Wy > 0. Note that the case W, > 0, W, > 0 cannot exist for @ > 0 (Why?).Satistying
these conditions requires the evaluation of three candidate solutions:

+ Upper bound is active, x =a, 4, =-2a, U, =0
« Lower bound is active, x = —a, Uy = —2a, 4, = 0
 Neither bound is active, L, =0, 1; =0,x=0

Clearly only the last case satisties these conditions because the first two lead o negative
values for |1, or U,. If we evaluate the second order conditions Eq. (9.16) we have allowable di-
rections p = Ax with Ax > 0 and Ax < 0. Also, we have

VL u% A% =2>0 and

9.20
PTV L (0%, W, A%) p =2 Ax? > 0 Q)

for all allowable directions. Therefore, the solution x* = 0 satisfies both the sufficient first and
second order Kuhn Tucker conditions for a local minimum.
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We now consider an interesting variation on this example. As seen in Figure 9.5, suppose
we change the sign on the objective function and solve:

Min —x2 s.t. —a < x<a, where a > 0. (9.21)

Here the solution, x* = a or —a, is seen by inspection. The Lagrange function for this problem is
now written as:

Lix, L) == + [y (x — @) + Py (~a — x) (9.22)
with the first order Kuhn Tucker conditions given by:
VL, ) ==2x+p1 -1 =0
WEx—-—ay=0 p(-a-x)=0 (9.23)
—a<x<a W, Hy 20
Again, satisfying conditions (9.23) requires the evaluation of three candidate solutions, depend-

ingon =, =05, >0,u,=0;0r ;=04 >0:

« Upper bound is active, x = a, i} = 2a, W, = 0
« Lower bound is active, x = —a, 1, = 2a, i, =0
« Neither bound is active, b, =0, 1, =0, x=0

and all three cases satisfy the first order conditions. We now need to check the.second order con-
ditions to discriminate among these points. If we evaluate the second order conditions (16) at
x =0, we realize allowable directions p = Ax > 0 and — A x and we have:

PTV L (x 1, A p=—2Ax2 <0, (9.24)

This point does not satisfy the second order conditions. In the other two cases, we invoke
a subtle concept. For x = a or x = —a, we require the allowable direction to satisfy the active
constraints exactly. Here, any point along the allowable direction, x* must remain at its hound.
For this problem, however, there are no nonzero allowable directions that satisfy this condition.
Consequently, the solution x* is defined entirely by the active constraint. The condition:

pTV Lk, w5 A p>0 (9.25)

for all allowable directions, is vacuously satisfied—because there are no allowable directions.

The first and second order Kuhn Tucker conditions provide a useful tool for identifying
local solutions to nonlinear programs. (It should be noted, though, that because second de-
rivatives are often not calculated in process optimization problems, second order condi-
tions are rarely checked.) However, we still need efficient search strategies that locate
points that satisfy these conditions. In the next section, we develop a nonlinear program-
ming algorithm called Successive Quadratic Programming (SQP). For process optimiza-
tion, this algorithm has some desirable features and it has been used widely in many
process applications. Moreover, it has proved to be adaptable to several kinds of nonlinear
programming problems.



