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sitional logic can be used to help us to model these constraints. In the next chapters, we
will actually make use of LP, MILP, NLP, and MINLP formulations for modeling synthe-
sis problems. However, we will keep in mind the above guidelines when developing these
models.

MODELING OF LOGIC CONSTRAINTS AND LOGIC INFERENCE

Because a large part of the next chapters will deal with the development of mixed-integer
optimization methods, we will present in this section a framework that should be helpful
for deriving constraints involving 0-1 variables. Some of these constraints are quite
straightforward, but some are not. For instance, specifying that exactly only one reactor
be selected among a set of candidate reactors i € R is simply expressed as,

z.\-’,:l (15.14)

ieR

On the other hand, consider representing the constraint: “if the absorber to recover
the product is selected or the membrane separator is selected. then do not use cryogenic
separation”, We could by intuition and trial and error arrive at the following constraint,

Vit Yy t2yess2 - - (15.15)

where y,, vy and yeg represent 01 variables for selecting the corresponding units (ab-
sorber, membrane, cryogenic separation). Note that if y, = | and/or y,, = 1 (Eq. 15.15)
forces yog= 0. We will see, however, that we can systematically arrive at the alternative
constraints,

Y4+ Vs <l (15.16)

YutYess]

which are not only equivalent to Eq. (15.15) but also more efficient in the sense that they
are “tighter” because they constrain more the feasible region (see exercise 7).

In order to systematically derive constraints involving 0-1 variables, it is useful to
first think of the corresponding propositional logic expression that we are trying to model
as described in Raman and Grossmann (1991). For this we first must consider basic logi-
cal operators to determine how each can be transformed into an equivalent representation
in the form of an equation or inequality. These transformations are then used to convert
general logical expressions into an equivalent mathematical representation (Cavalier and
Soyster, 1987; Williams, 1985).

To each literal P; that represents a selection or action, a binary variable y, is as-
signed. Then the negation or complement of P; (= P; ) is given by 1 — y;. The logical value
of true corresponds to the binary value of 1 and false corresponds to the binary value of 0.
The basic operators used in propositional logic and the representation of their relation-
ships are shown in Table 15.1. From this table, it is easy to verify, for instance, that the
logical proposition in y,v y, reduces to the inequality in Eq. (15.13).
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TABLE 15.1 Constraint Representation of Logic Propositions and Operators

Logical Boolean Representation as
Relation Comments Expression Linear Inequalities
Logical OR PivPyv . vP, yity oty 21
Logical AND PyAPyALAP, ¥ =1

vy 21

vz 1
Implication Pi=pr, - PyvP, =y +y;21
Equivalence Py if and only if P, (= PyvP)Aa(=PvP) Y=Y,

PI=2P)AP,=P)

Exclusive OR Exactly one of the variables PvPyv.vP, Yty t.ty.=1

is true

With the basic equivalent relations given in Table 15.1 (e.g., see Willlams, 1985),
one can systematically model an arbitrary propositional logic expression that is given in
terms of OR, AND, IMPLICATION operators, as a set of linear equality and inequality
constraints. One approach is to systematically convert the logical expression into its
equivalent conjunctive normal form representation, which involves the application of pure
logical operations (Raman and Grossmann, 1991). The conjunctive normal form is a con-
junction of clauses, Oy A Q5 A ... A O, (i.e., connected by AND operators A). Hence, for
the conjunctive normal form to be true, each clause @; must be true independent of the
others. Also, since a clause Q; is just a disjunction of literals, P, v P, v ... v P, (i.e., con-
nected by OR operators V), it can be expressed in the linear mathematical form as the in-
equality,

Yty toty, =] (15.17)

The procedure to convert a logical expression into its corresponding conjunctive
normal form was formalized by Clocksin and Mellish (1981). The systematic procedure
consists of applying the following three steps to each logical proposition:

1. Replace the implication by its equivalent disjunction,

Pi=P o =PvP (15.18)
2. Move the negation inward by applying DeMorgan’s Theorem:
(P APy & aPivaP, (15.19)

~(PyvP) & -P A-P, (15.20)
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3. Recursively distribute the “OR” over the “AND"”, by using the following equiva-
lence:

(PLAPYVP, &  (PivPy) AP,V P (15.21)

Having converted each logical proposition into its conjunctive normal form repre-
sentation, Oy A Oy A ... A Q,, it can then be easily expressed as a set of linear equality and
inequality constraints.

The following two examples illustrate the procedure for converting logical expres-
sions into inequalities.

EXAMPLE 154

Consider the logic condition we gave above “if the absorber to recover the product is selected or
the membrane separator is selected, then do not use cryogenic separation”. Assigning the
boolean literals to each action P, = select absorber, Py, = select membrane separator, P = se-
lect cryogenic separation, the logic expression is given by:

P,V Py=—Pg (15.22)
Removing the implication, as in (13.18), yields,
= (PyV Py v = P 2 = (15.23)
Applying De Morgan’s Theorem, as in Eq. (15.20), leads to,
(G Py A=Py) v = Peg (15:24)
Distributing the OR over the AND gives,
(A Py VP APy v = Prg) (15.25)

Assigning the corresponding 0—1 variables to each term in the above conjunction, and using Eq.
1D:L7)s

I=ys+1-yes21

1=yt 1=y (15.26)
which can be rearranged to the two inequalities in Eq. (15.16),
Yatyessl
52
Yyt Yes=1 A5En
EXAMPLE 15.5
Consider the proposition
(P, APy v Py= (Pyv Ps) (15.28)
By removing the implication, the above proposition yields from Eg. (15.18),
[ (PyAPY VP VP,V Ps (15.29)

Further, from Egs. (15.19) and (15.20), moving the negation inwards leads to the following two steps,
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[=(PLAP)ARPy ]V Pyv Py (15.30)
[P vaP)A=P VP v Ps (15.31)

Recursively distributing the “OR” over the “AND" as in Eq. (15.21) the expression becomes
(P VAPV PV P)A (R Pyv Pyv Py (15.32)

which is the conjunctive normal form of the proposition involving two clauses. Translating each
clause into its equivalent mathematical linear form, the proposition is then equivalent to the two
constraints,

Vit Ya— Y= ¥5=1

Y3 —Ya—ys=0 T

From the above example it can be seen that logical expressions can be represented
by a set of inequalities. An integer solution that satisfies all the constraints will then deter-
mine a set of values for all the literals that make the logical system consistent. This is a
logical inference problem where given a set of n logical propositions, one would like to
prove whether a certain clause is always true.

It should be noted that the one exception where applying the above procedure be-
comes cumbersome is when dealing with constraints that limit choices, for example, se-
lect no more than one reactor. In that case it is easier to directly write the constraint and
not go through the above formalism. ’

As an application of the material above, let us consider logic inference problems in
which given the validity of a set of propositions, we have to prove the truth or the validity
of a conclusion that may be either a literal or a proposition. The logic inference problem
can be expressed as:

Prove @,
st B(Qy, 0y Q)

where Q, is the clause or proposition expressing the conclusion to be proved and B is the
set of clauses Q, i = 1,2,..,s.

Given that all the logical propositions have been converted to a set of linear inequal-
ities, the inference problem in Eq. (15.34) can be formulated as the following MILP (Cav-
alier and Soyster, 1987):

(15.34)

Min Z= ZC,-yf
ie I (15.35)
st A vyv=a

ye {0.1}"

where A y 2 a is the set of inequalities obtained by translating B (Q,, O, .. , Q,) into their
linear mathematical form, and the objective function is obtained by also converting the
clause Q, that is to be proved into its equivalent mathematical form. Here, J{u} corre-
sponds (o the index set of the binary variables associated with the clause @, This clause
is always true if Z = 1 on minimizing the objective function as an integer programming
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problem. If Z = 0 for the optimal integer solution, this establishes an instance where the
clause is false. Therefore, in this case, the clause is not always true.

In many instances, the optimal integer solution to problem (15.35) will be obtained
by solving its linear programming relaxation (Hooker, 1988). Even if no integer solution
is obtained, it may be possible to reach conclusions from the relaxed LP problem if the so-
lution is one of the following types (Cavalier and Soyster, 1987):

1. Zxeq™> 0 The clause is always true even if Z ;..o < 1. Since Z is a lower bound
to the solution of the integer programming problem, this implies that no integer so-
lution with Z = Q exists. Thus, the integer solution will be Z = 1.

2. Z qaxea = 0, and the solution is fractional and unique: The clause is always true be-

cause there 1s no integer solution with Z=1.

For the case when Z_,.,.q= 0 and the solution is fractional but not unique, one cannot
reach any conclusions from the solution of the relaxed LP. The reason is that there may be
other integer-valued solutions to the same problem with Z ..., = 0. In this way, just by
solving the relaxed linear programming problem in Eq. (15.35). one might be able to make
inferences. The following example will illustrate a simple application in process synthesis.

-

EXAMPLE 15.6
Reaction Path Synthesis involves the selection of a route for the production of the required prod-
ucts starting from the available raw materials, All chemical reactions can be expressed in the
form of clauses in propositional logic and can therefore be represented by linear mathematical
relations. The specific example problem is to investigate the possibility of producing H,CO,
given that certain raw materials are available and the possible reactions.

The chemical reactions are given by
H,0 +CO,
C+0,

>H,CO,
>CO,
assuming that H,O, C, and O, are available. Expressing the reactions in logical form yields

H,0 A CO, = H,CO,
C'A0,= CO,

The objective is to prove whether H,CO; can be formed given that H,O, C, and O, are
available. Define binary variables corresponding to each of C, O,, CO;, H,0, and H,CO,.
Translating the above logical expressions into linear inequalities, the inference problem in Eq.
(15.35) becomes the following MILP problem,

(15.36)

(15.37)

Z=Min  yypcos

st Yo+ Ycor = Ymacos =1
Yct+ Yoz~ Yco2 =1
Sr120 =] (15.38)
Ve = j
Yo2 =1

Yo Yo2r Yoo YH20r Yhaco3 € 0.1}
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The objective involves the minimization of y 003 because the objective is to prove
whether H,CO; can be found. Solving the relaxed LP problem yields an integer solution with
Z=1and y;joc03 =Ygz = L. This solution is then interpreted as “H2CO3 can always be produced
from H,O , C, and O, given the above reactions”,

15.8

Finally, it should be noted that the MILP in Eq. (15.35) can easily be extended for
handling heuristic rules that may be violated (Raman and Grossmann, 1991). To model
the potential violation of heuristics, the following logic relation is considerded,

Clause OR v (15.39)

where either the clause is true or it is being violated (v). In order to discriminate between
weak and strong rules, penalties are associated with the violation v, of each heuristic rule,
i=1,.,m. The penalty w, is a non-negative number that reflects the uncertainty of the cor-
responding logical expression. The more uncertain the rule, the lower the penalty for its
violation. In this way, the logical inference problem with uncertain knowledge can be for-
mulated as an MILP problem where the objective is to obtain a solution that satisfies all
the logical relationships (i.e., Z =0 ), and if that is not possible, to obtain a solution with
the least total penalty for violation of the heuristics:

Min  Z=w'y
st Ay  2a : Logical facts (15.40)
By+v 2b . Heuristics
ye {01} v20

Note that no violations are assigned to the inequalities Ay = a since these corre-
spond to hard logical facts that always have to be satisfied. In this way Eq. (15.40) can be
used to solve inference problems involving logic relations and heuristics. Clearly, if the
solution is Z = 0, it means that it is possible to find a solution without violating heuristics.
In general, the solution to Eq. (15.40) will determine a design that best satisfies the possi-
bly conflicting qualitative knowledge about the system.

MODELING OF DISJUNCTIONS

In the previous section we presented a systematic framework based on logic for modeling
constraints involving 01 variables. In a number of cases, however, we will have to deal
with logic constraints that involve continuous variables. A good example is the following
condition when selecting among two reactors:

If select reactor 1, then pressure P must lie between 5 and 10 atmospheres.
If selecr reactor 2, then pressure P must lie between 20 and 30 atmospheres.

To represent logic with continuous variables we will consider linear disjunctions of
the form:
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plAx<h] (15.41)

where v is the OR operator that applies to a set of disjunctive terms D. In the above exam-

ple, Eq. (15.41) reduces to:
P<10 P <30
-P<-5| Y |-P<-20 (15.42)

where the first term is associated to reactor 1 (y;) and the second term to reactor 2 (y,).
The simplest way to convert Eq. (15.41) into mixed-integer constraints is by using
“big-M” constraints, which are given as follows:

Ax<bh+M(1-y;) ieD

}EYﬁ:l (15.43)

ieD
y;=0,1 ieD

Note that the 0-1 variable y; is introduced to denote which disjunction i in I) is true
(y; =1). The second constraint in Eq. (15.43) only allows one choice of y;. The first set of
inequalities, i € D, introduce on the right-hand side a big parameter M, which renders the
inequality redundant if y, = 0. Note that if y, = I, the inequality is enforced.
As applied to Eq. (15.42) the big-M constraints yield: . -
P<10+M, (1-y))
-P<-5+M; (1-y)) (15.44)
P<30+M, (1 -y,
-P<20+M,(1 -y,
vty =1
Large values, such as M, = 100, M, = 100, are valid choices but produce weak “relax-
ations” or bounds for the objective function when the y’s are treated as continuous vari-
ables. This would be, for instance, the first step in the LP branch and bound method.
An alternative for avoiding the use of big-M parameters in Eq. (15.43) is the use of
the convex hull formulation, which requires disaggregating continuous variables. As

shown in Balas (1985) and discussed in Turkay and Grossmann (1996), the convex hull
model of Eq. (15.41) is given by:
X = Z Zi

ieD
A."Z.!'S'biyi ieD
Z}ﬁ:l
ieD (15.45)
0<z; Uy ieD
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In the above z; are continuous variables disaggregated into as many new variables
as there are terms for the disjunctions. The first equation simply equates the original vari-
able x to the disaggregated variables z,. The second constraint corresponds to inequalities
written in terms of the disaggregated variables z, and a 0—1 variable ¥;- The third simply
states that only one y; can be set to one. The fourth constraint is optional in that it is only
included if y; = 0 in the second inequality does not imply z, = 0. The importance of the
constraints in Eq. (15.45) is that they do not require the introduction of the big-M parame-
ter yielding a tight LP relaxation. The disadvantage is that it requires a larger number of
variables and constraints.

Applied to Eq. (15.42), Eq. (15.45) yields,

P=P +P,
P, <10y Py <30y, (15.46)
-Py < -5y —P,< 20y,

Yty =1

It is important to note that often the convex hull formulation will simplify if there
are only two terms in the disjunction and one requires the variable to take a value at zero.
For instance, consider a flow £ = 0 for which

-

[F<20] v [F=0] ) (15.47)

It can easily be shown that applying Eq. (15.45) to Eq. (15.47), since F, = 0.y,,
I'=F, and hence the convex hull at Eq. (15.47) is given by

F<20y, (15.48)

In practice, the big-M constraints as in Eq. (15.43) are easiest 1o use and will not
cause major difficulties if the problem is small. For larger problems the convex hull for-
mulation is often the superior one.

NOTES AND FURTHER READING

A recent review on optimization approaches o process synthesis can be found in Gross-
mann and Daichendt (1996). Modeling is largely an art that has a large impact in mixed-in-
teger programming. Good practices can be learned from examples. The book by Williams
(1985) is perhaps the most useful. Similarly, the book by Schrage (1984) has a good number
of examples for LP and MILP problems. Nemhauser and Wolsey (1988) also present some
interesting examples. Finally, the papers by Raman and Grossmann (1991, 1994) provide
logic-based formalisms for the modeling of the O-1 and disjunctive constraints.
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