SUMMARY OF OPTIMIZATION
THEORY AND METHODS

This appendix will attempt to present in a very concise way basic concepts of optimiza-
tion. optimality conditions, and an outline of the major methods that are used in Chapter 9
and in Part IV. A bibliography is given at the end of the appendix for readers who may
wish to do further reading on this subject.

A.1 BASIC CONCEPTS

We will consider the following constrained optimization problem (Bazaraa and Shetty,
1979; Minoux, 1986):

min f(x)

st h(x)=0
glx) <0 (F)
xe Rn

where f{x) is the objective function, ii(x) = 0 is the set of m equations in n variables x, and
2(x) £ 0 is the set of r inequality constraints. In general, the number of variables n will be
greater than the number of equations m, and the difference (n — m) is commonly denoted
as the number of degrees of freedom of the optimization problem.

Any optimization problem can be represented in the above form. For example, if we
maximize a function, this is equivalent to minimizing the negative of that function. Also,
if we have inequalities that are greater or equal to zero, we can reformulate them as in-
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X2

» FIGURE A.1 Feasible region for
x2  three inequalities.

equalities that are less or equal than zero multiplying the two terms of the inequality by
minus one, and reversing the sign of the inequality.
DEFINITION 1
The feasible region FR of problem (P) is given by
FR={x | h(x)=0, g(x) <0, x € R")

Figure A.1 presents an example of a feasible region in two dimensions that involves
three inequalities. Note that the boundary of the region is given by those points for which
g;(x) =0,i=1,.23. Also, the infeasible side of a constraint is represented by dashed lines.
In Figure A.2, if we add the equation h(x) = 0, the feasible region reduces to the straight
line in boldface.

X2

. FIGURE A.2 Feasible region for
x1  three inequalities and one equation.
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FIGURE A.3 (a) Convex feasible region; (b) nonconvex feasible region.

DEFINITION 2
FR is convex iff for any x!, x> € FR,
x=ox!l+ (1 -o)xte FR, Vae [01]

Figure A.3a presents an example of a convex feasible region; the region in Figure
A.3b is nonconvex., since some of the points of the line that results from joining x' and x*
lie outside the region FR.

The following is a useful sufficiency condition for the convexity of a feasible
region.

PROPERTY 1

If h(x) = 0 consists of linear functions, and g(x) of convex functions, then FR is a convex
feasible region.

DEFINITION 3
f(x) is a convex function iff for any x!, x? € R,
flox' +[1 -] @) <ofia)y+[1 —al fix?) Voe [01]

Figure A.4a presents an example of a convex function whose value is underesti-
mated in the interval [x!, x2] by the linear combination of the function values at the ex-
tremes of the interval. Figure A.4b presents an example of a function that is not convex. It
should also be noted that if the above expression holds as a strict inequality for the points
in the interval (x,, x,), then f{x) is said to be strictly convex.
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FIGURE A.4 (a) Convex function; (b) nonconvex function.

DEFINITION 4

f(x) has a local minimum atx € FR, iff 38 > 0, f{x) = fix) for | x-% | <&, xeFR.
If strict inequality holds the local minimum is a strong local minimum (see Figure
A.5a); otherwise it is a weak local minimum (see Figure A.5b).

DEFINITION b
fix) has a global minimum at X € FR, iff fix) = fX) V¥V xe FR.

fo A fx A

P ——
(a) X (b) X

FIGURE A.5 (a) Function with strong local minimum; (b) function with weak local
minimum.
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fo A

FIGURE A.6 Function with two local minima,

Clearly, every global minimum is a local minimum, but the converse is not true.
Figure A.6 presents an example of a function with two strong local minima, one of them
being the global minimum. ] -

A.2 OPTIMALITY CONDITIONS
A.2.1 Unconstrained Minimization

Consider first the unconstrained optimization problem,
min f{x)
xe R"

where f{x) is assumed to be a continuous differentiable function.

First order conditions, which are necessary for a local minimum at %, are given by a
stationary point; that is, an X satisfyingV it) = 0. This implies the solution of the follow-
ing system of n equations in n unknowns,

oJf
. S
axl

a _
8x2 a 0
o
2 —¢
dx

n
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Second order conditions for a strong local minimum, which are sufficient condi-
tions, require the Hessian matrix H of second partial derivatives to be positive definite.
For two dimensions the matrix H is given by,

Xf 9
ax]?’ axlaXQ
O f Py

0x20%) x5

Note that this matrix is symmetric.

The matrix H is said to be positive definite iff Ax™ H Ax > 0, ¥ A x # 0. The two fol-
lowing properties are useful for establishing in practice the positive definiteness of the
Hessian matrix:

1. H is positive definite iff the eigenvalues p;>0,i=12,.n
2. If H is positive definite, then f{x) is strictly convex .

That s, from property (1) we can establish the positive definiteness if the eigenvalues
calculated from matrix H are all strictly positive. Property (2) simply states that functions
whose Hessian matrix is positive definite are strictly convex functions. Therefore, analyz-
ing the Hessian matrix of a function is one way to determine if a given function is convex.

The following is a useful sufficient condition for the uniqueness of a local minimum
in an unconstrained optimization problem,

THEOREM 1
If fx) is strictly convex and differentiable, then if there exists a stationary point at %, it

will correspond to a unique local minimum.

A.2.2 Minimization with Equalities

Consider next the constrained optimization problem with only equalities:
min f{x)
st h(x)=0
xe j»

In this case, the necesssary conditions for a constrained local minimum are given by
the stationary point of the Lagrangian function

m
L=7F(x)+ Z?L_jhj(x)

F=1.

where 7Lj are the Lagrange multipliers. The stationary conditions are given by,
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oL -
a. a=Vf(x)+Z?LJ-V’hj(szo
J=1
b. aa;:_zhj(x):o j=12..m

Note that (a) and (b) define a system of n + m equations in n + m unknowns (x, A).
Also, note that equation (a) implies that the gradients of the objective function and equali-
ties must be linearly dependent, while equation (b) implies feasibility of the equalities. It
must also be pointed out that for the above equations to be valid a “constraint qualifica-
tion” (e.g., see Bazaraa and Shetty, 1979) must hold. In convex problems this qualifica-
tion is always satisfied.

Second order sufficient conditions for a strong local minimum are satisfied when
the Hessian of the Lagrangian is positive definite. That is, given an allowable direction p
that lies in the null space, VAip = 0, we have p” V2 L (x*, L*)p > 0, where V2L (x*% A%) =
V2fxc%) + M*, V2 h(x®).

A.2.3 Minimization with Equalities and Inequalities

Consider the constrained optimization problem with equalities and inequalities,
min f{x)
s.t h(x)=0 (P)
g <0
xe R"
In this case the necessary conditions for a local minimum at x are given by the Karush-

Kuhn-Tucker conditions:

a. Linear dependence of gradients

m X
VEx)+ Y hVhy(x)+ Y 1V s(x)=0
J=1 j=1

b. Constraint feasibility
hx)=0 j= 12.m  gx)=0 j= 1,2...r
¢. Complementarity conditions

we@=0, W20 j=12.r

where [, are the Kuhn- Tucker multipliers corresponding to the inequalities, and which are
Jestuctcd to be non-negative. Note that the complementarity conditions in (c) imply a zero
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x2 |

FIGURE A.7 Geometrical
g  Tepresentation of a point satisfying the
x1  Karush-Kuhn-Tucker conditions.

value for the multipliers of the inactive inequalities (i.e., g,(x) < 0), and in general a non-
zero value for the active inequalities (i.e., g(x) = 0). Figure A.7 presents a geometrical
representation of a point satisfying the Karush-Kuhn-Tucker conditions. Note that Vf is
given by a linear combination of the gradients of the active constraints Vg,, Vg,.

It can also be shown that the multipliers W, are given by

B T
%; Bg=0.i%]

In other words, they represent the decrease of the objective for an increase in the
constraint function; or alternatively, the increase of the objective for a decrease in the
constraint function. From the latter, it follows that active inequalities must exhibit a non-
negative value of the multipliers.

The following is a useful sufficient condition on the uniqueness of a local optimum
in constrained optimization problems.

THEOREM 2

If f(x) is convex and the feasible region FR is convex, then if there exists a local minimum
at x,

i. Itis a global minimum.
ii. The Karush-Kuhn-Tucker conditions are necessary and sufficient.

The difficulty with the equations in (a),(b),(c) for the optimality conditions of prob-
lem (P) is that they cannot be solved directly as is the case when only equalities are pre-
sent, In general the solution to these equations is accomplished by an iterative active set
strategy, which in a simplified form consists of the following steps:
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Step 1: Assume no active inequalities. Set the index set of active inequalities J,= (J, and
the multipliers W= = T

Step 2: Solve the equations in (a) and (b) for x, the multipliers A, of the equalities, and
the multipliers L1 of the active inequalities (in 1st iteration there are none):

m
VE(x)+ Y A Vhi(x)+ WsVgifx)=0
SR SRk

J=1 jed,
hj-(x}zﬂ j=12..m gj(x) =0 jelJ,

Step 3. If g (x) <Oand w; 20, j=1,2,...r, STOP, solution found. Otherwise go to step 4.
Step 4: a. If one or more multipliers ; are negative, remove from J, that active inequal-
ity with the largest negative multiplier.
b. Add to J, the violated inequalities g; (x) > 0.
Return to step 2.

The above is only a very general procedure and is suitable for hand calculations of
small problems.

A3 OPTIMIZATION METHODS

In this section we will present a brief overview of the different types of optimization
methods covered in Parts II and IV. The emphasis will be on practical aspects, and only in
the case of mixed-integer nonlinear programming we will present some more detail on the
actual methods.

A.3.1 Linear Programming

When only linear functions are involved in problem (P), and the continuous variables x
are restricted to non-negative values, this gives rise to the LP problem:

min Z = ¢x
si. Ax=a (LP)
x=20

where the sign = denoles equalities and/or inequalities. Since linear functions are convex,
from Property 1 and Theorem 2, the LP has a unique minimum. This may, however, be a
weak minimum, for which alternate variable values may give rise to the same minimum
objective function value,

The standard solution method is the simplex algorithm [Hillier and Lieberman,
1986] which exploits the fact that in an LP the optimum lies at a vertex of the feasible re-
gion (see Figure A.8). At this optimuni, the Karush-Kuhn-Tucker conditions are satisfied.
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XZA

- FIGURE A.8. Optimum lies at vertex
x1 x* for LP problem.

Many refinements have been developed over the last three decades for the simplex
method, and most of the current commercial computer codes (e.g., OSL, CPLEX,
LINDO) are based on this method. Very large scale problems (thousands of variables and
constraints) that are sparse (i.e., few variables in each constraint) can be solved quite effi-
ciently. As a general guideline, the computational effort in the simplex algorithm is de-
pendent mostly on the number of constraints (rows in LP terminology), not so much on
the number of variables (columns). In problems with many rows and relatively few vari-
ables, it is advisable to solve the LP through its dual problem .

For variables x that can be positive and negative in an LP, these are replaced by
x=x"—xN, where x” and xV are non-negative. If xV is zero we get a positive value, and if
x"is zero we get a negative value. This manipulation should only be used when the vari-
able x appears with a positive coefficient in the minimization of an objective function.

Recently, interior point methods for LP (Marsten et al., 1990) have been developed
that are polynomially bounded in time. Although these methods are theoretically superior
to the simplex algorithm, it is only for extremely large scale problems that substantial
compultational savings have been observed (e.g.. problems with 100,000 constraints and
variables).

As a final point, it is important to note that special classes of LP problems can be
solved more efficiently than with standard LP codes. The best known case are network
flow problems (see Minoux, 1986) where the matrix of coefficients involves only 0, 1, —1,
elements. In this case the simplex method can be implemented with symbolic computa-
tions leading to order of magnitude reductions in computational time.

A.3.2 Mixed-Integer Linear Programming

This is an extension of the LP problem where a subset of the variables are restricted to in-
teger values (most commonly to 0-1). The general form of the MILP problem is given by,
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min Z=a’y + ¢Tx
s.t. By+Ax=b (MILP)
ve {01} x=0

where y corresponds to a vector of ¢ binary variables.
The MILP problem is very useful for modeling a number of discrete decisions with
the binary variables y (see Chapter 15). Typical examples are the following:

a. Multiple choice constraints
Select only one item:

o
S.ri-1
=1

Select at most one item:

Select at least one item:

t
PRCES
7j=1

b. TImplication constraints.
If item k is selected, item j must be selected, but not vice versa: y,—y; <0
If a binary variable y is zero, an associated continuous variable x must also be zero:

x=Uy<0, x20

where U is an upper limit to x.
¢. Either-or constraints (disjunctive constraints)
Either constraint g,(x) < 0 or constraint g,(x) < 0 must hold:

g0 -Uys0, gx-Ud-»<0

where U is a large value.

A simple-minded approach to obtain the global optimum of the above MILP would
be to solve the LPs that result from considering all the 0-1 combinations of the binary
variables. However, the number of combinations is 2/, which is too large for even modest
number of variables (e.g., for 20 binaries there are 105 combinations).

A second approach is to relax the 0-1 constraints as continous variables that must lie
between 0 and 1; that is, 0 < y, < 1. The problem is then solved as an LP. The difficulty
here is that except for special cases (e.g., assignment problems), one or more binary vari-
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ables will exhibit noninteger values at the optimum LP solution. The relaxed LP, how-
ever, is useful in providing a lower bound to the optimal mixed-integer solution.

In general, one cannot simply round the noninteger values of the binary variables in
the relaxed LP solution to the nearest integer point. Firstly, because the rounding may be
infeasible (see Figure A.9a), or secondly because it may be nonoptimal (see Figure A.9h).
The standard method for solving MILP problems is the branch and bound method
(Nemhauser and Wolsey, 1988). which was briefly outlined in Chapter 15 in the context of
the synthesis of a separation sequence. For the MILP we start by solving first the relaxed LP
problem. If integer values are obtained for the binary variables, we stop, as we have solved
the problem. If, on the other hand, no integer values are obtained, the basic idea is then to ex-
amine through the use of hounds a subset of nodes in a binary tree to locate the global
mixed-integer solution. In the tree the binary variables are successively restricted one by
one to 0-1 values at each node where the corresponding LP is solved. This can be done quite
efficiently by updating the successive LPs through few dual simplex iterations.

Nodes with noninteger solutions provide a lower bound, and nodes with feasible
mixed-integer solutions provide an upper bound. The former nodes are fathomed when-
ever the lower bound is greater or equal than the current best upper bound. For the tree
enumeration one has to consider branching rules to decide which binary variable is fixed
next in the tree. These rules range from simply picking the first non-zero value to the use
of penalties to estimate which binary produces the smallest degradation in the LP. Also, in
a similar way as in the implicit enumeration described in Chapter 15, the tree can be enu-
merated through a depth-first method, a breadth-first method, or combination of the two.

Ya

Infeasible

< | F Ny ——
\ 1 2 /O 1 Y\ ¥y
Nonoptimal Optimal

(a) (b)

FIGURE A.9 (a) Infeasible rounding of relaxed integer solution: (b) nonoptimal
rounding of relaxed integer solution.
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FIGURE A.10 Branch and bound tree for example problem (MIPEX).

The more advanced MILP packages allow the specialized user to specify the search op-
tion to be used. Figure A.10 presents an example of a tree search with branch and bound
in the MILP problem:

min - Z=x+y,+ 3y, +2y;

st. —x+3y| +2y2+},-3§0
— 5y, — 8y, —3y; < -9 (MIPEX)
220,y v y3= 0.1}

The branch and bound tree using a breadth-first enumeration is shown in Figure
A.10. The numbers in the circles represents the order in which 9 nodes out of the 15 nodes
in the tree are examined to find the optimum. Note that the relaxed solution (node 1) has a
lower bound of Z = 5.8, and that the optimum is found in node 9 where Z = 8, y, = 0,
Va=yg=1l,andx=3.

Although the general performance of the branch and bound method can greatly vary
from one problem to another, as a general guideline the computational expense tends to be
proportional first to the number of 0-1 variables, secondly to the number of constraints, and
thirdly to the number of continuous variables. Another criterion, which is often more rele-
vant, is the gap between the objective function value of the relaxed LP and the optimal
MILP solution. The smaller this gap the easier it is usually to solve the MILP problem since
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the LP relaxation is “tighter.” The importance of developing a proper MILP formulation
that adheres as much as possible to the above guidelines cannot be underemphasized.

As for computer packages, most LP codes include extensions for solving MILP
problems (e.g., OSL, CPLEX, LINDO, ZOOM).

A.3.3 Nonlinear Programming

In this case, the problem corresponds to:
min f{x)
st hx)=0 (NLP)
gx)<0

xe R?

where in general f{x), h(x), g(x), are nonlinear functions.

The more efficient NLP methods solve this problem by determining directly a point
that satifies the Karush-Kuhn-Tucker conditions. As pointed out in Theorem 2, global
minumum solutions can be guaranteed for the case when the objective and constraints are
nonlinear convex functions, and the equalities are linear. Since the Karush-Kuhn-Tucker
conditions involve gradients of the objective and constraints, these must be supplied by
the user either in analytical form or through the use of numerical perturbations. However,
the latter option is expensive for problems with large number of variables.

Currently the two major methods for NLP are the successive quadratic program-
ming (SQP) algorithm (Han, 1976; Powell, 1978) and the reduced gradient method
(Murtagh and Saunders, 1978, 1982). In the case of the (SQP} algorithm (see Chapter 9
for more details) the basic idea is to solve at each iteration a quadratic programming sub-
problem of the form:

min  Vfx"d + 1/2 d"B*d
st h(x®) + VAT d =0 (QP)
2R + Veg(xhTd <0

where x* is the current point, B is the estimation of the Hessian matrix of the Lagrangian,
and d is the predicted search direction. The matrix B% is usually estimated with the BFGS
update formula, and the QP is solved with standard methods for quadratic programming
(e.g., QPSOL routine). Since the point x* will in general be infeasible, the next point x#+!
is set to x¥*+! = x* + o d, where the step size o is determined so as to reduce a penalty func-
tion that tries to balance the improvement in the objective and the violation of the con-
straints.

An important point about the SQP algorithm is the fact that the QP with the exact
Hessian matrix of the Lagrangian in B can be shown to be equivalent to applying New-
ton’s method to the Karush-Kuhn-Tucker conditions. Thus, fast convergence can be
achieved with this algorithm.
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In the reduced gradient method, on the other hand, the basic idea is to solve a se-
quence of subproblems with linearized constraints, where the subproblems are solved by
variable elimination. In the particular implementation of MINOS by Murtagh and Saun-
ders, the NLP is reformulated through the introduction of slack variables to convert the
inequalities into equalities; that is, the NLP reduces to

min f{x) (NLP1)
st r{x)=0

Linear approximations of the constraints are then considered with an augmented La-
grangian for the objective function:

min ¢(x) = fix) + A7 [r{x) — r(xk)] (NLP2)
st JOHx=»b
where Akis the vector of Lagrange multipliers, and J(x*) is the jacobian of r(x) evaluated

at the point x*. Subproblem NLP2, which is a linearly constrained optimization problem,
can be represented by

min §(x)
st Ax=Db

-

where A is a mxn matrix with m < n. The above problem can be solved with the reduced
gradient method as follows. Firstly, the vector x is partitioned into the vector v of m de-
pendent variables, and the vector u of (n — m) independent variables. Likewise, the matrix
A is partitioned into a (mxm) square matrix B, and a mx(n — m) matrix C. The reduced gra-
dient can then be computed from the equation

8r=Z"V ()
where xk is a feasible point satisfying the linear constraints, and Z is a transformation ma-
trix given by
zZ=[-B-'c | I

With the reduced gradient the Newton step, Au in the reduced space can be com-
puted from

HyAu=-gp

where Hj, is the reduced Hessian matrix, which is estimated through a Quasi-Newton up-
date formula (e.g., BFGS formula). The change in the dependent variables, Av, is then ob-
tained by solving the linear equations

BAv=-CAu

In summary, in the reduced gradient method the subproblem (NLP2) is solved as an
inner optimization problem, while in the outer optimization the new point is set as X1 =
xk + o A x where o is the step size that is used to reduce the augmented Lagrangian in
(NLP2), and Ax = [AvIAu]
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The importance of the reduced gradient method is that by efficient implementation
for the solution of the above equations (see Murtagh and Saunders, 1982) and realizing
that some of the tools for large-scale LP can be used, sparsity can be readily exploited. In
this way large nonlinear optimization problems can be solved very effectively. In compar-
ing the SQP algorithm and the reduced gradient method, the following general guidelines
apply:

1. SQP requires fewer iterations than the reduced gradient method. However, there
may be difficulties in applying it to large-scale problems since in general the matrix
B, which is of dimension n x n, will become dense due to the Quasi-Newton up-
dates. The SQP method is best suited for “black-box™ models (e.g., process simula-
tors) that involve relatively few variables (e.g., up to 50) and where the gradients
must be obtained by numerical perturbation. It should be noted, however, that the
SQP algorithm can be effectively applied to large-scale problems that involve few
decision variables by using decomposition techniques.

2. The reduced gradient method, as per the implementation in MINOS is best suited
for problems involving a significant number of linear constraints, and where analyt-
ical derivatives can be supplied for the nonlinear functions. With this structure,
MINOS can solve problems with several hundred variables and constraints. Com-
pared to SQP, MINOS will require a larger number of function evaluations, but the
computational time per iteration will be smaller. Furthermore, in the limiting case
when all the functions are linear the method reduces to the simplex algorithm for
linear programming.

A.3.4 Mixed-Integer Nonlinear Programming

MINLP problems are usually the hardest to solve unless a special structure can be ex-
ploited. The following particular formulation, which is linear in the 0-1 variables and lin-
ear/nonlinear in the continuous variables, will be considered:

min Z = ¢’y + fix)
S.1 hix)=0
g(x) <0
Ax=a (MINLP)
By+Cx<d
Ey<e
xe X={x | xe Rn, xL < x < xV}
ye {011

As explained in Chapter 15, this special MINLP structure arises in process synthesis
problems.
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This mixed-integer nonlinear program can in principle also be solved with the
branch and bound method presented in section A.3.2. The major difference here is that the
examination of each node requires the solution of a nonlinear program rather than the so-
lution of an LP. Provided the solution of each NLP subproblem is unique, similar proper-
lies as in the case of the MILP would hold with which the rigorous global solution of the
MINLP can be guaranteed.

An important drawback of the branch and bound method for MINLP is that the so-
Jution of the NLP subproblems can be expensive since they cannot be readily updated as
in the case of the MILP. Therefore, in order to reduce the computational expense involved
in solving many NLP subproblems, we can resort to two other methods: Generalized Ben-
ders decomposition (Geoffrion, 1972) and Outer-Approximation (Duran and Grossmann,
1986). Below we first briefly describe the latter method with the equality relaxation vari-
ant by Kocis and Grossmann (1987).

The basic idea in the OA/ER algorithm is to solve an alternating sequence of NLP
and MILP master problems, The NLP subproblems arise for a fixed choice of the binary
variables. and involve the optimization of the continuous variables x-with which an upper
bound to the original-MINLP is obtained (assuming minimization problem). The MILP
master problem, on the other hand, provides a global linear approximation to the MINLP
in which the objective function is underestimated and the nonlinear feasible region is
overestimated. Furthermore, the linear approximations to the nonlinear equdtions are re-
Jaxed as inequalities. This MILP master problem accumulates the different linear approxi-
mations of previous iterations so as to produce an increasingly better approximation of the
original MINLP problem. At each iteration the master problem predicts new values of the
binary variables y and a lower bound to the objective function Z. The search is terminated
when no lower bound can be found below the current best upper bound which then leads
to an infeasible MILP.

The specific steps of this algorithm, assuming feasible solutions for the NLP sub-
problems, are as follows:

Step 1: Select an initial value of the binary variables y!. Set the iteration counter K = 1.
Initialize the lower bound Z) = — e, and the upper bound Z;, = + ce.

Step 2: Solve the NLP subproblem for the fixed value ¥, 1o obtain the solution x* and the
multipliers A* for the equations h(x) = 0.

Z (y%y = min ¢7y* + fix)

s.t. hix)=10
gx) <0
Ax=a
Cx<d—By*
xe X

Step 3: Update the bounds and prepare the information for the master problem:
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Update the current upper bound; if Z oK) < Zy , set Zy = Z (%), y* =¥k,
x"=xK

Derive the integer cut, ICX, to make infeasible the choice of the binary y&
from subsequent iterations:

ek =Y - ySlBK‘ﬁi}
NK

feBK ie

where B¢= (i | yK=1}, N¢={i | yK=0)
Define the diagonal direction matrix T for relaxing the equations into in-
equalities based on the sign of the multipliers A*. The diagonal elements are
given by:
TR <0
K . ;

o =4+ if A5 >0 j=12.m

0if 2§ =0
Obtain the following linear outer-approximations for the nonlinear terms f(x),
h(x), g(x) by performing first order linearizations at the point x¥ : <

(WEYT x —w K = fxk) + V fxB)T (x — 1) .
Ry — 1K = h(x¥) + V h(xX)" (x — xF)
SKx — 5K = g(xK) + V g(xf)T (x — xK)
Solve the following MILP master problem:
ZX=min cly + 1L
s.t. (why x — L < wk

T Rk x < T% rk k=12,.K

Skx < st

y e ICk

By+Cx<d

(MOA)

Ax=a
Ey<e
ZFlsdly+us2y
ye (0.1} xeX pekR

If the MILP master problem has no feasible solution, stop. The optimal solu-
tion is x*, y* Z.

. If the MILP master problem has a feasible solution, the new binary value yh+l

is obtained. Set K = K + 1, return to step 2.
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It should be noted that in step 2, there is the possibility that the NLP subproblem
may not have a feasible solution for the selected value of the binary variable y*. When
this is the case, the value of x¥ and A% can be obtained by solving the following NLP in
which the infeasibility is minimized:

min u

st h(x)=0
gx) =u
Ax=a
Cx—d-By=<u
xe X ue R!

Furthermore, the objective function value is set to Z (y¥) = + oo

It should be noted that sufficient conditions to obtain the: global optimum solution
require convexity in the nonlinear terms f(x), g(x), and quasi-convexity in the relaxed non-
linear equations 7% /i(x). When these conditions are not met, there is the possibility that
the master problem may cut off the global optimum solution as discussed below.

Also, as an interesting point it should be noted that for the limiting case when f(x),
g(x), and h(x) are linear, the MILP master problem provides an exact representation of the
MINLP, and therefore the QA/ER algorithm would converge in no more than two itera-
tions. For nonlinear problems, computational experience indicates that the master prob-
lems provide an increasingly good approximation with which convergence can be typi-
cally achieved in only 3 to 5 iterations.

In the Generalized-Benders decomposition the above steps are virtually identical
except that the MILP master problem in step 4(a) (assuming feasible NLP subproblems)
is given at any iteration K by: ‘

Z(;B = min o
st o= fixk) + Ty + (WOT [Cxk + By —d] k=12...K (MGB)
ae R!, ye {0,1}

where ot is the largest Lagrangian approximation obtained from the solution of the K NLP
subproblems; x* and p* correspond to the optimal solution and multiplier of the kth NLP
subproblem; Z g  corresponds to the predicted lower bound at iteration K.

Note that in both master problems the predicted lower bounds, ZK ,, and Zf  in-
crease monotonically as iterations K proceed since the linear approximations are refined
by accumulating the Lagrangian (in MGB) or linearizations (in MOA) of previous itera-
tions. It should be noted also that in both cases rigorous lower bounds, and therefore con-
vergence to the global optimum, can only be ensured when certain convexity conditions
hold (see Geoffrion, 1972; Duran and Grossmann, 1986).

In comparing the two methods, it should be noted that the lower bounds predicted
by the outer approximation method are always greater than or equal to the lower bounds
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predicted by Generalized-Benders decomposition. This follows from the fact that the La-
grangian cut in GBD represents a surrogate constraint from the linearization in the OA al-
gorithm (Quesada and Grossmann, 1992). Hence, the Outer-Approximation method will
require the solution of fewer NLP subproblems and MILP master problems. On the other
hand, the MILP master in Outer-Approximation is more expensive to solve so that Gener-
alized Benders may require less time if the NLP subproblems are inexpensive to solve. As
discussed in Sahinidis and Grossmann (1991), fast convergence with GBD can only be
achieved if the NLP relaxation is tight.
As a simple example of an MINLP consider the problem:

min Z = y; + 1.5y, + 0.5y3 + x,2 +x,?
s.h (x,—-2) 2-x,<0

X —2y,20

X=X, —4(1-y,) <0

x —(1-y)=0
Xy =y, 20 B (6)
X+ X223y

ity tys2|
O<x <4 0<x,<4
_}’]s}‘z,)’_z:(),]

Note that the nonlinearities involved in problem (6) are convex. Figure A.11 shows
the convergence of the OA and the GBD methods to the optimal solution using as a start-

Obijective function

Upper bound
oE Dt A2
------ " -'-‘:D
Ok Lower
bound et - Lower bound
SF OA GBD
10 fF ."I
i
-5 b
=20 ..r-
Lo
; 2 ” P Iterations

FIGURE A.11 Progress of iterations of OA and GBD for MINLP in (6).
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ing point y; = y, = ¥y = 1. The optimal solution is Z = 3.5, with y; = 0. y, = 1, y3 = 0,
x; =1, x, = 1. Note that the OA algorithm requires three major iterations, while GBD re-
quires four, and that the lower bounds of OA are much stronger.

In the application of Generalized-Benders decomposition and Outer-Approxima-
tion, two major difficulties that can arise are the computational expense involved in the
master problem if the number of 0-1 variables is large, and nonconvergence to the global
optimum due to the nonconvexities involved in the nonlinear functions.

As for the question of nonconvexities, one approach is to modify the definition of
the MILP master problem so as to avoid cutting off feasible mixed-integer solutions.
Viswanathan and Grossmann (1990) proposed an augmented-penalty version of the MILP
master problem for outer-approximation, which has the following form:

K
zf =min "y +p+ Y 9 (" +4* +r5)

! (MOA)
S (”’k)X—}LSw;'f+])k

Tt Rk x < T* rk + g

Sky < sk % k=12,.K

yve ICk ) -

By+ Cx<d -

Ax=a

Ey<e

ye (0,1} xeX uneR':; phghrkx0

in which the slacks p¥, g% # have been added to the function linearizations, and in the ob-
jective function with weights p¥ that are sufficiently large but finite. Since in this case one
cannot guarantee a rigorous lower bound, the search is terminated when there is no further
improvement in the solution of the NLP subproblem. This version of the method together
with the original version have been implemented in the computer code DICOPT++, which
has shown to be successful in a number of applications. It should also be noted that if the
MINLP is convex, the above master problem reduces to the original OA algorithm since
the slacks will take a value of zero. For an updated review of MINLP methods see Gross-
mann and Kravanja (1995).

A4 COMPUTER CODES AND REFERENCES

The following computer software can be used for solving different classes of problems:

1. For LP and MILP:
* LINDO by Linus Schrage. Interactive program that is easy to use.



