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The problem of synlhesizing processing systems via simultaneous
structural and parameter optimization is addressed in this paper.
Based on a superstructure representation for embedding alternative
configurations, a general mixad-integer nonlinear programming (MINLP)
framework is presented for the synthesis problem. An eflicient outer-
approximation algorithm is described for the solution of the underlying
optimization problem, which is characterized by linear binary variables
and continuous variables that appear in nonlinear funclions. The pro-
posed algorithm is based on a bounding sequence that requires the

analysis of few system configurations, and the solution of a masler
problem that idenlifies new candidate structures. Application of the pro- . =
posed algorithm is illustraled with the eptimal synthesis of gas pipe-
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SCOPE

Synthesis is perhaps the cornerstone of the process
design activity since it addresses the tundamental
problem of structuring a processing scheme so as to
satisfy given goals and/or needs, This relatively new
research area in chemical engineering has received
considerable attention in the lileratlure; see fishida et
al. (1981) for a review. Theoretical as well as applica-
tions-relaled work in this area is currenily the subject
of major efforts. The main approaches that have

emerged for tackling process synthesis problems are
the use of heuristics, thermodynamic targets, and algo-
rithmic methods that are based on optimizalion tech-
niques (Slephanopoutos, 1981). As indicated by Gross-
mana (1925), the first two appreaches have been used
quite extensively with some important successes de-
spiie their obvious limitations, such as the fact of not
being able to assert the quaiily of the solution,
asoumplion on dominance of energy cosls, and the
icted application to specific subproblams. Algo-
rithinic mathods, on the other hand, offer a more gen-
eral and systematic approach since thay exglicilly ac-
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count for the economic trade-offs and interactions in
the synthesis of arbitrary processing systems. Further-
more, because of their nalure these methods can
accommodate the other two approaches and are bel-
ter suited for automatic synthesis of systems, as has
recently been shown in the mixed-integer linsar pro-
gramming (MILP) framework proposed by Papoulias
and Grossmann (1983a,b,¢). These aulhors developad
MILP formulations for utility systems, heal recovary
networks, and integrated total processing systems. An
important limitation of these lormulations is that nonlin-
earities cannol be handled explicilly as they requim:
the discrelization of those variables that give rise tn
nonlinear functions.
efficient oplimization procedures that can handla dis
crete and continuous variables in nonlingar models fo:
the synthesis of process systems.

This paper addres
efficient sotution procedure for algorithmic methods for
the synthesis of process systems. Based on lhe mode]
ing of a superslructure of alternalives as a mixeacd:
integer nenlinear programming (MINLP) program in
which the binary variables
tinvous variables are involved in nonlinear funclions, ar

Thus, there is a need lo develon

ses the problem of daeveloping nn
e

appeaar linearly and [he con
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alyorithm is presented for the simultaneous structural
and parameter oplimization of processing syslems.
This alyaorithm consists of an allernating sequence of
(P subproblems, and MILP master problems. In the
tornuer parameter optimization is performed for fixed

configurations, while in the latter configurations that
have the potential of being optimal are identified. The
application of this algorithm is illustrated with the opti-
mal synthesis of gas pipelines where both the configu-
ration and design parameters must be selected.

CONCLUSIONS AND SIGNIFICANCE

It has Leen shown that the underlying optimization
problem for the systematic synthesis of processing
systems thal rely on a superstructure representation
can be modeled by an MINLP program in which the
binary variables appear linearly and the continuous
varialiles are involved in nonlinear funclions. To solve
this class of problems an outer-approximation algo-
rithm has been proposed that consists of a bounding
sequence that is based on NLP subproblems for the
detailed analysis of specific configurations, and MILP
master problems for generating new candidate configu-
rations. Although the algorithm can be applied to any
type of nenlinear functions for the continuous variables,
a rigorous guaranlee for the global optimal solution can’
only be provided for the case when the nonlinear func-
flons are convex. :

The application of the outer-approximation algorithm
has been illustrated wilth the optimal synthesis of gas
pipelines in which both the configuration and parame-
lers must bz selected. This has been formulated as an

MINLP problem that has the mathematical structure of
linear binary variables, and continuous variables that
appear in nonlinear convex inequalities. As was shown
with a numerical example, due to the good quality of the
lower bounds predicted by the master problem, the
proposed algorithm requires the detailed analysis of
only a few pipeline configurations to find the global
optimal! solution.

The significance of the proposed algorithm is that it
is an efficient method that can handle explicitly non-
linear functions involved in MINLP formulations of syn-
thesis problems. This avoids the need of discretizing
continuous variables that give rise to nonlinearities as
is done in the MILP approach'for process synthesis.
Also, the algorithm is quite general in that it can be
applied to other problems that involve the optimization
of discrete and continuous variables. The application of
the outer-approximation algorithm to the synthesis of a
large integrated process example will be reported in a
future paper.

Intraduction

The Tormulation underlying the algorithmic approach based
o adsed inteper progrivomming for process synthesis involves
bwo tgor steps (Grossmann, TURS). The lirst step consists in
pustulating as potential solutions several competitive alternative
configurations Tor the processing system. The basic alternatives
s in penceal the cesnlt of preliminary sereening based on the
e ol heuristios, thermodymmie bounds, and for design experi-
cnce, Lhe tnterconnection of these basic alternatives via a super-
structure representation vsually generates many additional po-
tentind confignrations that expand the domain of analysis,
Exumiples of superstructures for processing svstems cian be
found in Papoulizs and Grossmann (1983a,¢) and Duran

Closa). The second step in the Tormulation is the modeling of

thie postilated saperstructure as a mixed-integer programming
progeeant that de penerad i the Tollowing mathematicnd form:

nn 'l 3)

et [10]

Lo this Docsiodation e continuous variables associated with

piocessing parinncters such as How rales, pressures, leniperi-
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tures, and cquipment sizing characteristics. The integer vari-
ables yrepresent diserete decisions in the pr. blem. ITn particular,
a subset of (hem consists of (0-1) binary variables associated
with units in the superstructure. These variables then serve the
purpose of distinguishing between alternatives as well as denot-
ing the potential existence of system units in the finad configura-
tion. A value of one for a given binary variable implies that the
corresponding unit will be Included in o parcticalar structure,
while a value of zero will exclude it. The vectors of construints r
and s represent performance relationships for system units in the
superstructure (e.g., energy and material balunee cqualtions,
cquilibrium  relations), design specifications, physical con-
straints, and logicul restrictions. H7 s a constrained set defined
by usually known lower and upper bounds on the continuous
varinbles, 1) = { yur & [integer set]h s a finite discrete set strue-
tured as explained later in the discussion. The objective function
C i typically @ cost function invalving both investment and
operating costs.

The basic idea in this approach for the synthesis problem is
therefore to extract from the superstricture the optimal system
conliguration amd its operating parameters by solving the
mised-integer optimization program PO This problem could in
principle be solved with a general purpose branch-and-bound
procednre (Beale, 1977 Gupta, 1980), or with the generalized
Benders decomposition method of Geollvion (1972}, Flowever,
beeause these methods were tntended Tor the solution of aorather
broad class of mixed-integer programs, they cannol in general
exploit ellectively the special structure ol synthesis problems.

Vol 32, No. 4 593



MINLFE

In its general form program PO contains many formulations
thar can be rather complex and usually dillicult 1o solve. That is,
features such as nonlinearily in discrete variables and nonsepa-

of Special Structure

rability of continuous and disercte variables may appear. Al-
can be handled using standard
procedures such as special ordered sets or “linearization™ meth-
ods (Beale, 1977; Beale and Tomlin, 1970; Glover, 1975) the
actual formulation of synthesis probless very often yields pro-
grams with special mathematical structure

The particalar structare that usually arises is that the binary
variables appear only linearly, and they are cither involved in
pure-inleper consteainls, or else are refated Lo continuous vari-
ables through inequalities. The reason for this is as Tollows. In
the abjective function, investment cost functions for system
units, see Figure 1, are commonly concave insome of the compo-
wents of w that denote a given activily (c.g., flow rales, cquip-
ment sizes). 'I‘Im is, duc (o cconomics of scale some activitics
tably be introduced on a small scale can nev-
Thus, to avoid
linding nonreatistic solutions, costs that could anly be saved by
the activity not laking place must be treated as fixed. Using the
binary variables y; that denate existence of system units, the fol-
lowing fixed-cost charge function approsimation can be used for
the investment cost of o given unit 4,

tiough same of these leatures

that cannat profi
ertheless be worth introducing on a Jarge scale.

Ciov, ) =3 + p(w) (1)

pi(w) =0 il ;= Q (2)

p(w) =0 il y= (3)
e this model, where the binary variable y; appears linearly in
Eqp. 1 apositive fixed charge ¢ is enly incurred when the system
unil j is present in a particular conliguration, or cquivalently
when the corresponding activily fevels in w are greater than
zera. Since the variable cost ,p (w), which can be a linear or non-

& INVESTMENT
COST
UNIT i

Ci(w.y) = c

ACTIVITY u. w
i

Figure 1. Fixed-cost charge function approximation.
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lincar function, is always nonncg'lm and monotonic (c.g. see
Figure 1), the constraints in Egs. 2 and 3 can in gcncml e
expressed as sets of linear inequalitics of the following form,

Wi Uy 0 H
wy = () (5)
C o, 11 (6)

wlhicre
known lmlu upper bound on wy.
unit j (i.c., vy = 0) the implication is that same of the associated
variables wy must be zero (e.g. Now rates, sizve parimeters),
Reciprocally, when w; = 0 holds in g, 4, minimization of ¢
given in Eq. b will imply that p; = 0. The advantages of this
fixed-cost charge model over other Lype of cost [unctions are dis-
cussed in the example section,

For _the mixed-integer formulation of (he superstructure,
binary variables neting g linearly are also used for umui'c‘i ng logi-

Wy is o particular component of the vector w, and 1 s

Thercelure, Tor o nonexistent

P s

comditions related to what can ‘w
LS O S T TERL

logical constraints. The basic clements of l()glu.:l wu-h fons are
the fundamental operations “and,” “or.”" and the implication *if

cthen .. " Asimple example is the ease when among a sel S
of system units only one of them must appear in Uie linal canfip.
uration. This logical condition, which is a disjunction (“or"},
can be expressed by the multiple choice constraint,

Z Yy =

JES
& o, 1) (7)

Thus, without great loss of pencrality, it will he as
most synthesis problems can be modeled as mixed-inteper non-
linear programming (MINLP) programs where the integer
varinbles are usually binary, always appear in linear form, and
arc involved in the objective function, and in mixed (continuous-
discrele) incqualitics and pure-integer constraints as discussed
above. Problem PO reduces then to the foliowing class of
MINLP programs as the underlyving model Tor the synthesis
problent:

sumed that

z=min <y + p(w)
w,
8k r(w) =0

(el
s(tw)y+ By=0

weE WLy E U

where the functions in the continuous variables (w), p, and thase
in the vectors rand s, can be of both types, linear and nontinear.
U=lyip 00, 17, Ay [= or =) a)isa inite binary set given by
purc-integer constraints. Some of the rows in ff may be the 7ero
row veetor, which then defines constraints in only the continuous
variables. It should be noted that the MINLP lormulation P
can be used to model a great variety of synthesis problems such
as ulility systems and integrated chemical processes (see Papou-
lias and Grossmann, 1983a,¢; Duran, 1934),

Because the synthesis probleny is an optimization problen.
the vector of equality constraints #(w) = 0 in I'l, which repre-
ALCHI
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sent the perlormance of units in the superstructure, is an under-

determined syatem ol equations, e, dim(w) = dim(r). Thevee-

Lar of continuous varinbles wean tierelore be partitioned as,

Wt e o7, 27 (

(]
—

where o the vevtor of state variables, has the sume dimen-
sionality us the veetor of equations r(w) = 0. The veetor x is the
set ol decision variables, which correspond to degrees of freedom
[or the continuous variables in the superstructure. Provided the
Prvere tansfartion exists for the given partitdon of variables,
thie state variables con be expressed as a Tunction of the decision
variables v, as given by
rlw) (e, n) =0 i g () (9)
The transformation » can be cither an explicit or an implicit
Lunetion of the state variables v, Whenever this transformation
coreesponds to an explicit relationship, the elimination of state
virtables is equivalent to algebraic varinble substitution. When
e transformation is implicit, this requires numerical elimina-
tion of the system ol equations. Details for the implementation

of the finplicit form case, as well as comments on the selection of

i osei ol decision virinbles can be found in Duran (1934).

The transformation in 11g. 9 then allows the elimination of the
system af equations r{v, x) = 0 and also of the state variables v,
o thitt the Munctions pand s in program P can be reformulated
i Lunctions defined in the reduced space of the decision vari-

abites o hat s,

piwy s ol v) =p(r(a),x) = f{x)
sln) oaloy n) = st (), x) = gly)

(10)

Therefure, in terms of the decision variables x, problem Pl

cin b relormabated s,

z -~ min ey fLx)
A
[P2]
sl glx)+ By =0

xeEXxye v

whicre N C RS s the eedinensional set A" = {xi[x e E 1
Ayx = ag ] and the Tunetions fand those in the veetor function
g R REwrc assumed in general Lo be nor inear. Thus, elimi-
ntion ol the equality constraints in program P1allows not only

a reduction on the dimensionality of the problem, but perhaps

more important, itrenders the eguivilent formulation P2 where,

the nulineacconstraiokang nsgualilics.

As will be shown in this paper, the particular mathematical
strtictire o problem P2 can be exploited o derive an cellicient
alporitlin for solving this MINTD program. For convenience in
thie preseutation, unboundedness and infeusibility conditions for
program P2 will oot be addressed heee, and it will therelore be
assumed it 122 Tas a fnite mised-integer optimal solution.

OUTLINE OF THE PROPOSED ALGORITHM

The basic ideas behind the proposed algorithm for solving
problents in the cluss represented by program P2 will be pre-

ALCRE. Joirnal Aprit 1956

'I ieurations has w be performed foran ¢
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sented in this section in the context of the synthesis problem,
Since the complexity (combinaterialnnture) of the synthesis.

i ;
,prthun is duc to the selection of structural paritmeters for

processing system, an intelligent search among alternative con-
Eluunl '~0|ullu.,
“The key ides in the proposed .ll"nulhm is 1o analyze a
bounding
scheme to suceessively reduce the number of candidate alterna-
tives [or the optimal solution. Te accomplish this obje
master problem is used both 1o generate specific candidate con-

seguence of system conligurtions making use ol o

clive a

frgurations for detaifed analysis, and o identily stopping criteria
for the seurch of the uplinml sulution,

garresponds Lo the optimizatien ol the continuous variabies asso-
ciated with the particular structure predicted by the master
problem. The nature of the master problem is such that ilrepre-

senls an approsimition 0 llm orizingl MI'\l P preblem, and
SENlS an appe

Iiach detaifed analysis

contains all of the alternatives ‘embedded in the superstructure.
TThe basic steps invalved T The proposed algorn 'ini'urc shown
in Figure 2, and are as follows. Aninitial system configuration is
specified by assigning appropriate fixed values to the binary
¢. This con-
figuration is then analyzed by optimizing its continuous param-
elers. Since the MINLP program B2 is the model of the super-
structure, [ixing the binary vnriublc.:s in P2 renders the nonlincar
programming (NLP) subproblem associated with o particular
configuration. Because every system configu ration is a restric-
tion of the superstructure, the optimal objective function value
ol the assoch ved NLP problem provides o valid upper bound on

variables associated with units in the superstructur

the cost of the optimal solution o program P2,

MIMNLP proonras

Superstruclure

{ixed contiguralion
(1=1: Initial struzture)

PROJECT CN

NLP susprosLEM
particular
corfiguration

A 2% byt wper bound

———_"[70UTE R-APPROXIMATION I

MILP MasTER prosLEM

s?rafegyj

2': lawer bound

|
|
|
|
| (relaxation
|
|
1
1

OPTIMALITY
215277

Lo e = =

ye1

STOPR

Figqure 2. MINLP algorithm for system synlhesis.
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Theiselution of the corresponding NLP subproblem is then
used as a base peint o construct a master program, which is the
reprascntation of an approximation to the original synthesis
probicm. Quter approximations at that continuous point, which
co-rcspond o a lincarization of the continuous partof the super-
ructure, are used to construct the master progrant, .Since. outcr

ations will be sclected 50 as (o overestimate the cc c_qn{ln-
u'bu\' feasible region of the superstructure and Lo undJE:?mnalu
m. oo_iccuv“ function, the masler program corxu.pondc Lo '1_
ation of the synthests problem. Thus, the optimal Ob_jLCllVL
function valug of the master program provides a lower bound on
the solution ol P2. Because the approximating functions will be
chosen as lincar expressions in the continuous variables, the
master prograni Corrcs;)oilds to a mixed-integer lincar program-
ming (MILD) problem. Additional constraints can be incorpo-
rated in this problem su as to exclude [rom consideration the sys-
tem: configuration just analyzed, and so as Lo require that the
objective function of the master program lic below the upper
bound that has been found. There are then two possibilitics
when solving the master program at the firstiteration:

1. If no feasible solution is found, it means that there are no
other system configurations with a lower bound smaller than the
upper bound given by the optimal cost of the conliguration just
analyzed. Henee, this processing stricture is the optimal solu-
llun Lo the synthesis problem and the search can be stopped.

2.1 a feasible solution is Tound, the new set of values deter-
mined for the binary variubles will correspond (o the configura-
tion of the processing scheme that is the eptimal solution of the
current approximation to the superstructure. Since the cost of
the approximation s a lower bound that lies below the cost of the
structure just analyzed, the new configuration is 2 candidate for
the optimal solution of program 2. To determine whether or
not the new configuration is the sotution for the synthesis prob-
lem, the optimization of the continuous paramecters has to be
performed by solving the corresponding NLP subproblem in the
second ileration. New ouler approximations are determined,
and lram this point on the procedure is repzited as shown in Fig-
ure 2 until no leasible solution is found in the master program.

[tshould be pointed out that particular system confligurations
have different feasible spaces, and therefore in general they are
independent of cach other. Thus in the iterative procedure out-
fined above, the cost of successive structures that are pencrated
daces not follow any particular trend, and the upper bound Lo be
considered at any ileration must be given by the lowesl cost
amaong the configurativns that have been analyzed up to that
point._Therefore, the optimal processing configuration will be
given by the one associated with the current best upper. bound...
when the stopping condition occurs.

I order for the master program Lo provide an increasingly
better approximation to the originad problem P2 as llerations
proceed, alt ol the vuter approximations determined for the con-
figurations analyzed previously are considered in the master
Under this strategy, the
is cquivalent to o sequence of

program al any iteration.

sequence of master problems

given

nested approxinutions of the superstructure. Sinee these ap-
progimations become inereasingly constrained, the associated
solutions of successive master problems will define a meonotone
nondecrensing sequence of lower bounds on the cost of the opti-
mad conlipuration.
In sumnary, te

proposed algorithim for selving the synthesis

problem consists of the selution of an alternate sequence of non-
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lincar programming subproblems and mixed-integer linear mas-
ter programs as seen in Figure 2. The former correspond (o the
detailed analysis of particular system configurations, while tle
lattler correspond to the solution of lincar approximations of the
superstructure that will either generate a new structure to be
tested, or identify the stopping criterion in the scarch procedure.
The main advantage with this procedure is that usually anly a
few iterations are required to solve mixed-inteper nunlinear pro-
gramming programs with the mathematical structure given by
P2 (Duran and Grossmann, 1984, 1985a).

MASTER PROGRAM

Since the master problem is the major component in the pro-
posed algorithm for solving the MINLP program I'2, this sec-
tion will present in a somewhat informal manner the basic idens
behind the mathematical formulation of this problem. The
detailed derivation of the outer-approximation algorithin and its
theoretical properties are given in Duran and Grossmann (1984,
1985a).

First, consider that a given combination 3" of binary variables
is selected. The MINLP program P2 for fixed |
the following NLP subproblem (or the particular system conlip-
uration associated with j,

vthen renders

- min f(x)

z(y') =Ty (S

s,l'.

Assuming that the continuous opllml:r\tlon prallem S 37) has
an optimal solution given by [z()7), x']. its optimal nhy.‘lm:
function value z () provides a valid upper boumd an the optimal
objeclive z for program P2. Furthermore, based on the optimun
value x' for the continuous variables x. an approximation to
problem P2 can be constructed as lollows.

Suppose that the nonlinear functions fand thase in the vector
g arc represented by linear outer approximations derived at the
point x. That is, linear expressions are derived for v hich the fol-
lowing relations will hold,

(a)x —b' = f(x)
‘ _ all v & A (1)

D'y —d < g(x)
where &', &, d', and D', are respectively a scalar, vectors, and «
matrix of comformable dimensions evaluated at given v & X 10
the nonlinear functions are continuously dilfercatiable and con-
vex, a judicious choice for the outer approximations in g, 11 is

clearly the tangentinl approximation at &% that i,

(”;'j [A — b = f‘(»\") + vf(..\.i')‘!(\. ;. .X'l)
Dix — ' = g(x) + vexaNT(x - x0)

alb ve = X0 (12}
where ¥/ (x7) is the n-gradient vector and @ g{x') the n x p
Jacobian matrix evaluated at given X €= XL 11 the functions are
noncanves, the derivation of the outer approximations in Py, 11
is in general a nontrivial problem. However, as discussed i

Duran (1984), goed linear underestimators that can be used as
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AN
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x! x

Figure 3. Quter approximation at one polnt for a convex
funclion in R'.

ouler upproximations can be derived for special classes of non-
eonvex funclions, ¢.g., concuve, bilinear, '

As piven by Eq. 11, the basic property that an outer approxi-
mation has o satisfy is that it must underestimate the value of
the function for «ll points in the domain. Further, for a continu-
ously differentiable convex function the best linear outer ap-
proximation is given by the tangential approximation at the
piven point, as shown in Figure 3. Because of the linearity of the
Binary variables, the underestimating effect carries over to the
objective function in program P2 since from Eq. 11,

CT), |- (c’li) Tx - b =< C'T}' +f(.’€}

(13)

Ou the other liand, the interseetion of the spuces defined by the
suter approximations to the functions g has the global effect of
averestimating the original continuous feasible region, as ilius-
truted in Figure 4. Hence, from Eq. 11 and due to the linearity of
the Linary variables it follows that,

Dix —d 4 By=g(x)+8Bp=0 (14)

Assuming that the euter approximations in Eq. 1] can be
obtained, the following mixed-integer lincar programming

93:0

Xa

Xy

Figure 4. Quter approximation at one point for a convex
selin R2
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(MILP) formulation provides an approximation to the MINLP
program P2,

= minely + (o) x = O

x, ¥y

. (15)
st Div + By =d'

xeEANye U

This problem underestimates the objective function and overes-
timates the feasible region of program P2. Therefore, the opti-
mal objective function value z'in Eq. 15 provides a lower bound
on the objective function of program P2, Note that the MILP
problem in Eq. 15 represents a linear approximution to the
superstructure at the point X', which corresponds to the optimal
continuous variables of the system configuration associated with
s
The formulation in Eq. 15 can be generalized for the-case
when k alternative system configiirafions have been analyzed
through the solution of the corresponding NLP subproblems

ST37). Thatis, if at the kth iteration of the algorithm one consid-
ers the auter approximations for the functions fand g at the opti-
mal points x":i = 1,..., k, the MILP problem in terms of these
k sets of outer approximations can then be formulated as,

z* = min ¢y p
X\ ¥
: (16)
s.L. (a)V'x —p=b

Dix + By =d'
xEXpER\yEU

where the outer approximations for the objective function have
been written as a sct of & inequality constraints with the upper
bound scalar variable p. This is the standard manipulation for
handling the pointwise maximum of a set of functions, which in
this case correspend to the objective function outer approxima-
tions. This ensures that for every point in the donuiin the largest
underestimation available will be selected or the objective func-
tion, Figure 5. '

(x)
A\
I
|
i
ol !
I
!
I
x! & x2 Cox
Figure 5. Underestimation of a convex function in R'.
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Asshownin Figures 5 and 6, as an increasing number ol ouler
approximations is considered in problem 16, an increasingly
tiphter representation for both the original objective function
and the feasible space is obtained. Because of this fuct, as itera-
tions proceed in the algorithm, the optimal objective function
vatues 28 ol the corresponding master problems in 16 determine
amonutone nondecreasing sequence of lower bounds on the oplti-
mal objective z ol the MINLE program P2; that is,

I LI T LT (17)

[Cinteger cuts are included in prablem 16, 50 as to mahke infea-
sible the selection of the binary combinations associated with the
A syslem conligurations that have been analyzed up to that
point, it is clear that the bounding property in Eq. 17 will still
hald. In the context of the proposed algorithm in Figure 2, the
monotonicity of the sequence ol lower bounds =27 = 1, ..., k,
can then be used to identily the stopping condition lor the proce-
dure.

[t should be recalled that the current best upper bound z* is
sclected as the smallest optimal cost among the & configurations
that have been analyzed, ie., z* = min {23 = 1, ..., kL
Therefore, i the inequality 28 > z* holds when solving the mas-
ter prablem in 16 at a given iteration &, this indicates that there
is no ather conliguration in the superstructure, dilferent from
the previously analyzed structures, that can have a smaller opti-
mal cost than the current upper bound. Henee, this implics that
the scarch can be stopped whenever the condition 2% > =* is
sutisficd.

The stopping criterion in the proposed algorithm can then be
detected il a violation to the constraint z* = z* occurs. From
problem 16 this constraint can also be expressed as ¢’y + u =
*. Incorporating Lhis constraint in problem 16 together with
integer cuts for excluding the & contigurations that have been
analyzed, the master program at a given iteration & can be writ-
ten in final form as the following MILP problem,

2F - min ey g
Xy py Y
5.t (a)'xy —p=p
. . i=1,...k ;
Dix + By =d' [M*]
ey +u=zr |

» E linteger cuts}
XENeER yEU

Although according to Ey. 17 the constraint 28 ' < ¢’y 4 pis
redundant, it has been introduced because it may expedite the
cnunterition procedure when solving the MILP problem. The
integer culs to climinate previously analyzed configurations are
lincar inequalitics, and their exact definition is given in the
Appendix,

For the &th iteration, problem M* then provides the required
master program in the algorithm outlined in Figure 2. I this
program has an optimal solution, an improvement in the lower
bound will then be obtained, and a binary combination will be

determined for a new system structure that has the potential of

becaming the optimal configuration. If on the other hand, prob-
lem M* has no feasible mixed-integer solution, this will imply
that the constraint 28 = z* has been violated, which indicates
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Figure 6. Overestimation of a convex setin R

that the search procedure can be stopped. The optimal solution
[z, x* p*]of the MINLP program P2 will then be given by the
current best upper bound z = z* oblained from the optimal solu-
tion x* of the p*-parameterized subproblem S ().

Algorithm

Having presented the basic ideas behind the outer-npproxi-
miation algorithm, the main steps shown in Fignre 2 can now he
stated, Por presentation purposes it is assuwmed that every NLD
subproblem has a linite optimal solution. The algorithm is then
as follows.,

Step L. Sct lower bound 2 = —«, upper bound z* = 4o, iter-
ation k - 1,

Seleet u binary combination p' & U

Step 2. Solve the p*-parameterized NLP subproblem S{p*).

S(»*) has the optimal solution [x*. z(3*)]. where z(y*) is a
valid upper bound on the optimal value z of the MINLP pro-
gram P2.

Update the current upper bound estimate: z* = min
{z*, z (1)

IMz* = z(3") selp* = % x* = &%

At the point x¥, derive the outer approximations in Fq. 11,

Derive integer cut (seec Appendix A) Lo eliminate v* [rom lur-
ther consideration.

Step 3. Using the sets of outer approximations that have heen
determined up to the current iteration k, construct and solve the
corresponding MILP master program MY,

One of the following cases must oceur:

(). Problem M* does not have a mixed-integer feasible solu-
tion, STOP,

The optimal solution to the MINLP program I'2 is given hy
the current upper bound z* and the varinble vectors (x*, v *),
That corresponds to the optimal solution of the y*-parameler-
ized NLP subproblem as defined instep 2.

(I1). Problem M* has a finite optimal solution (z*, x, )): g i
an clement in the monotonic sequence of lower bounds on the
optimal value z of the MINLP program P2; 1 is a new integer
combination Lo be tested in the algoritiin,

Derive irteger cuts (see Appendix A) to climinate binory
combinations that were found Lo be infeasible in the solution ol
problem MY,

ATCHE Tourmal



Sety*'' o yoand k= k 4 1 toindicate a new. ilgration.
Return to step 2.
In Duran and Grossmann (19854), it has been shown that this
algarithim converges in a finite number of iterations to the opti-

nial solution of program P2, For the case when the nonlines

Ium:nms Are convex, the dluurlll!m is gmmmecd to conv c,rg;, to

e glo Shal optimum a"lutiun . This follows from the fact that for
SoRveT fanetons the n nonlinear programming subproblems have
i unique solution, and that the bounding properties for the mas-
ter prabiem will rigarously hold by using the linearizations in
fap 12
(i the case when some of the nonlinear functlions are noncon-
L there are Lwo possibilities in applying this algorithm If the
of speeial structure, variable transfor-

mmln.mr functions are

R

mations may be nsed tu obtain convex
lincar underestiniators nw.y e uscd foensure that
propériies of e ma , vill_hold. This will in gc.nerai
c mmmn solution. For nonlinear functions
with tknown structure te algorithm can simply be applied

direetly with the linearizations in Eg. 12. In this case, however,
there is no rigorous guarantee that the global optimal solution
will L obtained since the N1LP subproblems may exhibit local
sulutions, and for the bounding properties of the master problem
iy not be preseeved.

1t should also be noted that it has been proved in Duran and
Girossmann (1984), that when convex functions are involved in
thie eluss of probicms P2, this algorithm will converge in fewer
fterations tan the generalized Benders decomposition method

of Geotfrion (1972). Qualitatively, this is due to the good
approximations o P2 that are provided by the master problem,
which will tend o predict very quickly tight bounds for the opti-
ual solution,

i same applications there is the possibility that in step 2 the
FL subproblem ma; lave no leasible solution for the selected
. When this case arises, step 2 in the 1bow.
)dlhu.l by setting z(y* )-u e, .m(l

wat particul g_ll“\j“lmfm’__av:lb-
pmblm1 s tiu. pumt ior dz_rwmu the corresponding_outer
xitmation. The theoretical justification for this proc;dure
can be found in Daran and Grossmann (19835a),

(L is also worth noting that the number of constraints in the
master problem MY in step 3 will increase as iterations proceed,
Jue 1o the successive addition of outer approximations. How-
ceer, it s clear that those individual constraints that are linear
are exactly equivalent to their corresponding outer approxima-
tons eoce, linear constraints do not require the successive

functions, or v.Ixc val:d

piiarantes plobal

l,lmtry viriable |’

wldition of approximations in the master problem. Therefore,

- . . - . -‘-‘.‘ -
the increase of the size of the master problem in successive itera-
ear con-

num is dependent only on the actual number of nonli
alr.nnls present in prubI:,m P,

A% u finad remark, it must be pomted out that if linear equal-
ity mmir‘rﬁrm MINLP formulation, these can

te handled directly by the algorithm and do not require elimina-

tinn. This follows [rom the fact that linear [unctions have an
cancl representation in the master problem, and therefore by
including them into this problem they will not contribute to the
g of the predicted lower bound.

Exazmple Problem
The test problem selected for this paper is the optimal synthe-
sia of pas transmission networks. For this problem it will be
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assumed that the two-dimensional location of a set of gas wells
and demand sites is given with their corresponding specifica-
tions for pressure and gas flow.

In general there are many possible transportation paths for
interconnecting the gas wells with the demand sites. In this
paper it will be assumed that the basic form of the transporta-
tion paths is postulated with a maximum number of potential
branches in the pipeline, each having specified gas flow rates,
e.g., Figure 7a. Furthermore, the two-dimensional location for
the mixing and splitting points in the pipeline will be treated as
continuous variables to be selected. In this way, different selee-
tions for these mixing and splitting points within the proposed
form of the transportation paths can give rise to different pipe-
line structures as illustrated in Figure 7. Note in this figure that
the length of one of the branches is reduced to zero for the alter-
natives in Figures 7b—d. Hence, if & maximum number of poten-
tial compressors is postulated in each branch of the proposed
transportation paths (Figure 74), a superstructure representa-
tion can be obtained for the gas pipeline problem. It should be
noted, however, that this superstructure is restricted to having
fixed flows in each of the potential branches.

Given then the superstructure described above, and specifica-

-
Well 1

D Demand 1

Dnema nd 2

Well 1

pemand 1

y e

well 2

Demand 2

(®)

D Demand 1

Dmmnnd 2

Well 1
Demand 1
M
—_
well 2D/ TT—[3] nemand 2
g
(d)
Figure 7. Alternative transportation paths for a gas pipe-
line.
Vol. 32, No. 4 594



tions for the gas wells and demand sites, the optimal synthesis of
the gas pipeline considered in this paper involves the selection of
the following items so as to minimize the total annual cost of the
system:

a. Number and location of gas compressors

b. Two-dimensional location of mixing and splitting points

c. Length and diameter for the different pipe segments

d. Power of compressors

e. Pressure profile of the pipeline
Note that items a and b define the configuration of the pipeline,
while items c—e define sizes and operating parameters. In this
paper the decision on the number of compressors will be mod-
eled with binary variables, while all the other decisions will be
modeled with continuous variables. It is clear that pipe diame-
ters in practice are only available in discrete sizes. However, in
order to simplify the formulation, pipe diameters will be treated
as continuous variables.

The above problem has been addressed previously by dif-
ferent authors with somewhat different assumptions and using
‘other solution procedures. In the work by Bickel et al. (1978) the
lengths of the branches along each path were specified without
accounting for coordinates in the location of gas wellheads and
demand points. Therefore, the optimal location of branch points
was not considered. These authors tackled this problem as both
a nonlinear optimization problem and as a mixed-integer pro-
gram in which integer variables were related to the number of
compressor stations. The latter formulation was solved with a
special branch-and-bound enumeration scheme. Since the non-
linear functions in these formulations are nonconvex, globality
of the solution and bounding properties in the branch and bound
solution method may not always hold. Dunn (1980) extended
the work of Bickel et al by specifying the two-dimensional loca-
tion of gas wells and demand points, and considering the optimal
location of branch points. Models were derived for the case of
one gas well and two demands, and for the case of two gas wells
and two demands. This author solved these models with two
nonlinear programming: formulations. In the first, linear costs
were assumed for the compressors; in the second, fixed cost
charges were included. For the latter formulation continuous
approximations in terms of compression ratios were used to
replace the binary variables. Although computer times with the
latter approach were substantially lower than with the branch-
and-bound procedure of Bickel et al., different solutions were
found by using different starting points. Finally, Soliman (1982)
has solved a restricted version of the gas pipeline problem in
which the lengths of all pipe segments were fixed. In this work
the problem was formulated as a nonlinear programming pro-
gram.

It should be pointed out that the main reason a purely non-
linear programming model may not represent the gas transmis-
sion network problem adequately is the effect of economies of
scale. If strictly linear cost functions are used, then a gradient-
based technique cannot guarantee to find a realistic solution.
That is, in this case since the effect of economies of scale is disre-
garded, the resulting nonlinear optimization program will have
the tendency to select many compressors that in addition may
have very small compression ratios. On the other hand, if econo-
mies of scale are modeled with the use of nonlinear concave cost
functions, or with continuous approximations for the fixed-cost
charges, the resulting nonlinear program will be nonconvex.
Hence, multiple local solutions can arise, possibly for each dif-
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ferent configuration. A way of circumventing both difficulties is
by assigning binary variables to the compressors to identify indi-
vidual alternatives, and by including fixed-cost charges in the
capital cost as indicated in Eq. 1 (see also Figure 1). This then
leads to an underlying MINLP model for the gas pipeline prob-
lem.

A generalized network formulation for the definition of the
gas pipeline problem addressed in this paper is given in Appen-
dix B. This formulation is applicable to any number of gas wells
and demand points for which a given superstructure is specified.
The MINLP formulation presented in Appendix B has the char-
acteristic that the binary variables appear linearly and that the
nonlinear functions in the objective function and constraints are
convex. Also, since the nonlinear equations can be eliminated by
variable substitution, the nonlinear constraints are inequalities.
Thus, the formulation belongs to the general class defined by
program P2. Note that due to the convexity of the nonlinear
functions the proposed algorithm will actually determine the
global optimum solution for this problem. Furthermore, due to
the convexity and differentiability of the functions the outer
approximations in Eq. 11 can be obtained by the function linear-
izations indicated in Eq. 12.

The example problem selected to illustrate the performance
of the outer-approximation algorithm, and the application of the
proposed MINLP formulation for the gas pipeline problem is
given in Figure 8. In this superstructure the circles represent
potential compressors, while the-pairs (x;, z;} are variable coor-
dinates that define their location. The data for the example in
this paper are given in Table 1. Each compressor, when present
in a particular pipeline configuration, is assumed to lose 0.5% of
the gas transmitted, and has an upper bound of 7,457 kW, which
is the maximum power that a singie-stage centrifugal compres-
sor can handle (Bickel et al., 1978). The associated MINLP pro-
gram for this particular instance can readily be derived based on
the general model given in Appendix B. The particular formula-
tion involves 10 binary variables, 51 continuous variables (41
acting nonlinearly), and 77 constraints partitioned as 10 non-
linear inequalities, 42 mixed-linear, and 25 linear.

With respect to the actual implementation of the proposed
outer-approximation algorithm, the NLP subproblems were
solved on a DEC-20 computer system with the computer code
MINOS/AUGMENTED (Murtagh and Saunders, 1980),
while the MILP master problems were solved with LINDO
(Schrage, 1981). It should be noted that the problem was solved
in English units.

The starting point selected was the binary combination y —
{yj=1,...,10} = (0,1,0,0,1,0,0,0,0,0), which corre-
sponds to the configuration shown in Figure 9. According to the
gas pressure conditions at the well and demand points, this
seemed to be a good initial configuration since it involved the
existence of compressors in the well branch and in the high-pres-
sure branch. The optimal continuous parameters for this config-
uration are reported in Table 2. A minimum total cost of
$8,586,756/yr was found, and the solution of the associated
NLP problem required 23.97 s of CPU time.

With this starting point for the first iteration, the proposed
outer-approximation algorithm solved the pipeline problem
given in Figure 8 and Table 1 in only five iterations and a
total of 178.18 s of CPU time. Of this total time, 135.20 s were
used for the solution of the five NLP subproblems. The actual
optimal configuration, y = {y;:j = 1,...,10} = (1, 1,1,0,0,0,
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Figure 8. Gas transmission network: superstructure for example problem.

0,0, 0, 0), was found by the master problem at the second itera-
tion, while the optimal continuous parameters for this configu-
ration were determined by the NLP subproblem at the third
iteration. This configuration, which is shown in Figure 10, rep-
resents the global minimum, and has a total cost of $7,837,827/
yr. Its detailed results are presented in Table 3. The progress of
the outer-approximation algorithm as given by the sequence of

Table 1. Data fer Example Problem, Figure 8

Cost Coefficients Constant Parameters

C,=$10,000/yr
C, = $103.93/kW - yr
C, = $21,283.77/km - m - yr

a=3/16,z=1,7=1

v = 1.26,5, = 0.76

p,=0.1013 MPa, T, - 288.9K
T-28890K

Capacity Bounds Problem Specifications

(x1, z,) = (0,0)

(xs 25) = (281.63,80.46)
(x12, 212) = (321.86,0)
Pis = 3.445 MPa

UY = 7,457 kW

UY = 281.63 km
UL = —281.63km

UY = 80.46 km Pows = 4.137 MPa, poy 2 = 2.068
MPa
Ut = —80.46 km Go = ¢ = 16.992 MMm’/d

Gas = oy = (g34) /2
Graph G = (V, E) Index Sets

v=1{1,2,3,4,5,6,7,8,9,10,11, 12}

E - [(1.2)}. (2,3), (3.4), (4,5), (5,6), (6,7), (7.8), (4,9), (9,10), (10,11),
(11,12)

S, = {(1,2), (2.3), (3,4), (4,5), (5.6), (6,7), (7,8)}

S, = {(1,2), (2,3), (3,4), (4,9), (9,10), (10,11), (11,12)}

V=111V, =12,3,4,5,6,7,9,10, 11}, V5 = (8,12}, V, = {4}

V(1) = {2}, V(1) = 0

V,(2) = {3}, v(2) = {1}
etc.
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lower bounds predicted by the master program, and the cost of
the five alternative configurations that were analyzed is re-
ported in Figure 11. This figure clearly shows that the master
problem provides very quickly good lower bounds, and conse-
quently good approximations to the original problem. The con-
dition to terminate the search for candidate configurations is
shown at iteration 5 of this figure.

Analysis of the results reported in Tables 2 and 3 shows that
with respect to the initial configuration, the parameters defining
the optimal transportation paths, Figures 9 and 10, did not
change substantially. However, the major element for the reduc-
tion in the cost of the gas pipeline network was the selection of
smaller pipe diameters, which was possible because of the selec-
tion of three compressors. Note that this actually led to total
power requirements that are approximately twice as large as in
the initial configuration.

An interesting feature in the solution for the optimal configu-
ration in Figure 10, was the fact that the pipeline segments
between selected compressors had zero length (see Table 3). The
interpretation of this result is that compressors with zero pipe
segment length between them can actually be regarded as just

29.2 miles

4,559 hp
26.6 in

10,000 hp

159.8 miles
39.9 in

COST : 8,586,756 §$/yr

Figure 9. Gas pipeline: initial configuration.
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Table 2. Results for Initial Configuration, Figure 9

Table 3. Results for Optimal Configuration, Figure 10

ey Pouey qiy Wy Px‘, dij
(i,.* MPa MPa  MMm'/day kW km m
I, 1 3.447 3.447 16.992 0.0 —_ —
I, 2 3.447 3.447 16.992 —_ 0.000  0.000
2,2 3447 4950 16.992 7457.0 -— —
2,3 4950 3.382 16.907 e- 257.189 1.015
3,3 3382 3382 16.907 0.0 -— —
3,4 3382 3382 16.907 — 0.000  0.000
4,4 1382 3,382 16.907 0.0 S -
4, 5 3382 1382 8.453 0.000  0.000
5.5 13382 4716 8.453 3399.5 -— —
5.6 4710 4.137 .41 e 46.952  0.677
6, 6 4,137 4137 8.4l 0.0 - —
6,7 4137 4137 5411 mzm 0.000  0.000
7,7 4137 4137 S.411 0.0 —- —_
7,8 4.137 4137 §.411 -— 0.000  0.000
4,9 3382 20638 8.453 — 80.543  0.705
9,9  2.068 2.068 5.453 0.0 - —
9,10 2.068 2.068 5.453 — 0.000  0.000
10,10 2068 2.008 §.453 0.0 = =
10,11 2.068  2.068 §.453 — 0.000  0.000
L1 2,008 2.068 8.453 0.0 ] —
1,12 2.068 2.068 8.453 — 0.000  0.000
(if) 12 2-3 3-4 4-5 5-6 G-7 7-8 4-9 "9-10 10-11 11-12
6x; 0.0 253.6 0.0 0.0 28.0 0.0 00 682 0.0 00 0.0
oz; 0.0 428 00 0.0 37.7 0.0 0.0 -428 00 0.0 0.0

Total Cost: §8,586,755.96/yr

Pin.i "Wy Ry ;!,‘;
(i,j)*  MPa kW km m
I } 3447 4950 16.992 7457.0 - -
1,2 4950 4950 16.907 - 0.000 0000
2,2 4950 7.2 16.907 7457.0 o -
2,3 T2l Tl 21 16.823 E noasn 000
33 7.121 10.262 16823 7457.0
3,4 10202 5831 16,738 262308 0723
4, 4 58310 5811 16,7385 .0
4, 5 5831 41137 8.309 A1.898 NS
5: 5 4,137 4.137 §.369 (0.0 - -
5.6 4.137 4.137 8.369 0.000 0,000
0, 6 4.137 4137 8.169 0.0 .
6, 7 4.137 4,137 8.369 () .00 (y.Qen
7,7 4037 4.137 §.309 0.0 4 i
7, 8§ 4.137 4.137 8.369 — 0.000  0.600
4, 9 5.831 2.008 8.369 -— 78128 0.535
9,9 2068 2.068 8.369 0.0 - -
910  2.068 2,008 §.369 -- 0.000  0.000
10,10 2.008 2.068 8.369 0 - -
o 2.068 2.068 8.369 - 0.000  0.000
111 2.068 2.068 8.369 - 0.0 - —
112 2.068 2.068 8.369 - 0.000 0000
(ij) 1-2 2-3 34 4-5 56 6-7 7-8 449 9 10 {011 Il 12
dx,; 0.0 0.0 2584 23.2 0.0 0.0 0.0 0634 00 0.0 o0
dz; 0.0 0.0 455 349 0.0 0.0 €0 —-455 0N 0.0 0.0

Total Cost: $7,837.827.20/yr

*i ~ i compressor {node ).
i # jipipeline segment (are if).

one multistage CONMPressor: i compressor with as many stages as
compressors involved in o pipeline segment of zero Jength. For
the present problem, Uhe solution is a three-stage compressor as
seenin Figure 10. Notice in Table 3 that the compression ratios
for the individual compressors are the same and equal to 1.44,
whiclh falls within practical limits. This result agrees with the
lact that work minimization is obtained when compression
ratios are equal in cach compression stage. The significance of
the results of this example is then that they show that the pro-
posed MINLP framework can actually accommodalte a rather
broad spectrum of gas pipeline alternative configurations from
which realistic solutions can be obtained.

[t should also be pointed out that according to the MINLP
formulation presented in Appendix B, the minimum number of
possible dillerent configurations for the gas pipeline example

32.000 hp —

OOV u-

COST = 7,837,827 S/yr

Figure 10. Optimal gas pipeline configuration far synthe-
sis problem.
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*i e compressor (node f).
i j: pipeline segment (are ij).

problem, as determined by the combinations of minmber ol possi-
ble compressors (five for wellhead branch, Tour Tor cacl ol the
two other branches), is 80; the maximum number of possible
cartfigurations, as determined by all individual compressor com-
binations, is 1,024 (2'%). The proposed algorithin ean therefore
be regarded as an ellicient solution procedure sinee only five Jif-
ferent pipeline configurations had to be analyzed in order to find
the optimal solution. This is particularly relevant since the bat-
tlencck in the computations is usually the detailed analysis of
the configurations with the NLP subproblems, as was the case in
this example problem.

Finally, in order to test the robustness of the outer apprexima-
tion algorithm, the preblem was solved with (wo additional
starling points: » = (1, 1,0,1,0,0,0,1,0,0), and y
(L1 1,0,0,0,0, 1,0,0). The optimal design of the first con-
figuration has a cost of $8,010,419/yr; the second conliguration
has a cost of $7,857,890/yr. As expectzd, both starting points
converged Lo the global optimum solution (§7,837,827/yr). The
former required only three iterations and 95,92 5 of CPU time
(79.09 for NLP subproblems), while the latter converged in four
iterations and 141.37 s (108.26 for NLP subprablems). Thus,
the efliciency of the algorithm in terms of number of required
iterations would suggest that the proposed procedure is 4 prou-
ising tool [or tacking the optimal design ol pas transmission nel-
works problem in its general form.

Discussion )
The outer approximation algorithm outlined in this paper was
the result of a recent study by the authors (Duran and Gross-
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z = ebjective function of MINLP problem
7 - lower bound of the objective [unction
= scalar variable for highest underestimate of nonlinear objective

Appendix A: Integer Cuts

Integer cuts have been derived to help in reducing the enu-
meration cllort in the search for promising system configura-
tions. There are at least two aspects in the preposed solution pro-
cedure where integer cuts can be uscd to enhance the efficiency
of the search procedure. The first is related to the elimination of
previously analyzed system structures (step 2 of the algorithm),
while the second is the eflicient solution of the sequence of
MILP master problems. For the latter purpose, integer cuts can
be used to express the infeasibility condition of certain binary
combinations [step 3(11) of the algorithm]. That is, il a binary
combination is found to be infeasible when solving the master
problem in a given iteration, it will also be infeasible in subse-
quent iterations. Since in gencral an enumeration scheme (e.g.,
branch-and-bound) has to be used to solve each instance of the
master program, in the associated search tree infeasible binary
cambinations can be identificd as given by nodes where the
bounding subproblem either doss not have a solution or clse has
an objective value greater than the current best upper bound in
the proposed algorithm. The elimination of particular binary
combinalions associated mtli_ihu two aspecty deseribed above
<1:1"b_c:_acx.o.n|Jl:slu.d \\nn the integer cut {pure- mtcgu con-
s!mmt)_(Dur:in 1984)..% Pe“;—~»—}* o dyp= O =1, awhere
for the binary combination y - {1 l to be eliminated the index

o e oo L NQ! o [t O]

Appendix B: MINLP [Model for the Gas
Transmission Nelwork Problem

In order to determine the actual number of compressor sta-
tions required in the postulated transportation path for the gas
pipeline, a maximum number of potential stations per branch in
the netwark can be embedded within a simple superstructure, as
in Figure 8. A binary (0--1) variable y; can then be associuted
with cach potential station to denote its existence or nonexis-
Lence in a particular pipeline configuration. Without loss of gen-
crality, it is assumed that in the postulated superstructure the
potential compressors per branch are allocated such that a can-
didate campressor is assigned o every mixing or splitting point,
to every pas wellhead, and to inlermediate points of cach
branch. .\!m. no compressor is located at any gas demand point,
Figure 8.

Inodesj & V= {jij =1, . Vare associated Lo potential
compressars and gas supply sites, and arcs (4, /) & E to pipe
scgnients, the natural representation of the gas pipeline problem
is that of a directed graph G = (V, £) (Figure 8), The underly-
ing model for this graph is a generalized network formulation
thatcorresponds to a MINLP program as given next. Each com-
pressor j (nodes) has the Tollowing continuous variables asso-
ciated with it horsepower (w), suction (p, ) and discharge
(pay) pressures, and courdinates (x;, z)) for determining its loca-
tion. (Jas flow rates, pressure specifications, and coordinaltes are
given for both production and demand nodes. The variables
chiracterizing cach pipeline segment (4, /), (ares), are length
(%), gas Low rate {q,), and internal diameter {d,).
portation paths & connecting gas well-demand poinl pairs are
assumed to be horizontal,

The trans-
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As a standard manipulation for network structures, the nodes
J & Vin the graph can be partitioned into sets of source (gas
well) nodes Vi, sink (demand site) nades ¥y, and intermedinte
nodes V. The set of mixing/splitling nodes Vy, which is a subsel
of V;, are also identified. Further, two index sets are associaled
with each node i & Fin the network, namely, the set 17,() -
{27, /) & E)of immediate downstream nades (How fromitaf),
and the set K, (0) ~ [/:(/, 1) & Lol immediate upstrenm nodes
(fow from j Lo i).

The objective lunction to be minimized is sclected as the
annual operating and maintenance costs of the compressors plns
the sum of the annualized capital costs of the pipe and compres.
sors. The binary variables p;. which denole existence/nonexis-
tence of compressor stations, are used [or a lixed-cost charge
formulation of the investment cost for the compressors. This
yields the following abjective function and related eapacity con-
strainls,

> m+C 2 Lo Rady (B

JZ Pw U¥ JEVLUY, n,)r- K
w,—Udy=0 allje 1 U vl (B2

Cr C,, and C, are, respeclively, the fixed-charge and unit costs.
U{is a known upper bound on the size of the compressors, The
performance relationship for pipeline seginents (7, j) & F is
given by the Weymouth (1912) Row equation,

al Ly F ()

dy = () [phe = P "% (B

where
By~ s, T [p./(0.375 7)) (g,) {B4)

s, is the gas specific gravity, (p,. 7,) are the standard conditions,
T is an average gas temperature, and o = (3/16). For each
demand node j & V,, the discharge and suction pressures are
the same and equal to the specilied supply pressure g, ;. The
compressors arc assumed to be adiabatic, and hence power
requirements w; are given by the expressions,

b
Pail C Fywy =1 allj € vy U W (B3)
P.s.j
where

. s I
Fp= (v = 1) /(10420 T 7)) ; (B6)

i

-1

j = 4] (137)

!

qy - Z_ 4y (38)

=a i

z is the compressibility factor, v the heat capacity ratio, 5 com-
pressor elliciency, and T the gas temperature at suction condi-
tions. The units assumed in the above equations are MPa for
pressure, K for temperature, MMm/day for flow rates, kW [or
power, km lor pipe length, and m for pipe diameter. Other con-
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steaints in the problem are order relations belween discharge
and suction pressures for cach potential compressor,

allj & v
allj = Vy (B9)

Paj— Psj20
Pag = Pinj

wliere p,,, are given pressure conditions at the gas wells; con-
straints that account for the monotonicity of the pressure profile
in each pipe segment are given by

Pay s Pa=0 alljE VLU VTE T ONS

Py = Do alli € Vi, j € Vi) (B10)
The location of compressors in the network (and consequently
the optimal lucation of splitting and mixing points), and the
length of cach pipeline sepment can be handled by delining the

[ollowing coardinate ditTerence variables,

By = Xy == X w
al (i, Y E E
B2y w2y — 2 (B11)
Heice, the location of compressors can be expressed as relative
pasitioning, and the length of each pipeline segment can be
oblained as the Guclidean distance between the corresponding
nodes, this is,
2 S RRTIPPa .
£, = [(Bx)t 4 (2 ¥]'? (L) EE (B12)
Sinee the cvordinates for gas wellheads m & Vi, and demand
puints & £ 17, are part of the specifications for the problem,
comslraints representing transportation paths & between’gas
wells and supply sites cun be given by

S bxy e Ly, allk

(LHES

3 bz = L, allk

(LN ES: (B]“])

where

[-k_: =Xy — Xy
LE Ve meE Vy

Lis= 20 = Zn

and where S, is the set of pipeline segments in the transportation
path k. Additional construints are related to logical conditions
that state that whenever a given compressor exists, the asso-
ciated downstream pipeline segment must also exist; that is,

b, — Uy, =0

~bxy - Ubyy =0
, u:: j o i€ vl i € V(i)
by e ¥y e

% !'32,1 | n'."i v = 0 (B14)
where OV 0 and U, U8 are, respectively, upper and lower
Lonmls oo the conrdinate dilterence varinbles dx, and dz,,
Motice that it has been taken into account that these variables
are nol restricted in sipn. Also, Lo ensure continuily of pressure
prefile, no constraints have been derived for either source nodes
j O Py o mising/splitting points j € V. Finally, there are
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either bounds or nonnegaltivity constraints on continuous vari-
ables, and integrality constraints on binary variables.

Through elimination of pipeline segment diameter (d,) and
length (€;,) variables, using the explicit system of Eqs. B3 and
B12, the problem can be formulated in terms of only pressures,
coordinate differcnces, and compressor powers. Since power
requirements wy for compressors appear with positive coefli-
cients in the objective function Eq. B, and this is a minimiza-
tion problem, the compressor problem expressions in Eq. B5Scan
be written as less than or equal inequality constraints. It can
readily be shown that the variable transformations,

Paj = €Xp (1)
Doy = exp () (B15)

lead 1o convex nonlinear Tunctions that appear in the objective
function and in the constraints of Ly. BS. Performing all of the
manipulations above, the following MINLP program cun be
obtained as the underlying general madel for the gas pipeline
problem as addressed in this paper:

Minimize € 9 %+ G 2. W
JEVWUY, JE Var UV}

4 C.F G ij {5-‘72.‘ + Bzilljl(nﬂ)

IEVWUVLIEIVADV

- [exp (2u) — exp (2v)]7°

+ . BY[ox} + szp]iHeD
JEVAIEVL))

* [CXP(ZUu') . (Poul.})l] -

subject to:

u —v;=0 J& N
- U = JE Vi U Vi i € UV

;= In (Piny) JE Vy

u;=In (Pous) + € i & Vp jE VA

exp [b(u; — v)] — Fjwy =1 IEWN

exp {blu; = In (p ) = Fywy =1 JE Vw

Z dxy = Lix

=S,

Z A:U = LA,:

(LS,

all k

bxy; — Uiy = OW
—bxy — Uby, =0

Gy =0} all j & (KAWL 1 €2 1))
TR S T

JE Pl

bz + Uby; =0

Wy - iy -0
allj & Ve U

BX s B2 & R 10, 0002 0

y 40, 1} PV (ko) EF
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where e = 1 x 107" was introduced to avoid singularities in the
objective function, This MINLP problem has exactly the same
mathemadical structure as program P2, and itcan be shown that
all of the nonlinear functions are convex.
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