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Abstract—This is a brief note on an alternate MINLP model for finding the number of trays required
for a separation objective described by Viswanathan und Grossmann [Computers chent. Engng 14, 769-782
(1990)]. The idea is 10 fix the location of the feed tray and to model the problem of finding the trays on
which the reflux and the boilup enter as optimum location problems for them. The resulting model is not
only conceptually simple and clegant, but also results in shorter solution times, Nonideal distillation

problems have also been solved by this approach.

INTRODUCTION

Traditionally, the problem of finding the number of’
trays for a system with product rates specificd has
been done by short-cut methods based on the pio-
neering works of Underwood, Fenske, Gilliland,
Winn and others (sce, e.g. Henley and Seader, 1981).
These methods make simplifying assumptions such as
constant molal overtlow, constant relative volatility,
ete. which seldom hold when the system is nonideal.
These estimates are subsequently verified by rigorous
tray-by-tray methods. Furthermore, it is not straight-
Aorward to extend these methods for problems with
complex specifications such as those encountered in
applications. As a result, a large number of simu-
lations and optimizations must be done to arrive at
a suitable design for the problem in hand.

[n this paper, an MINLP model is presented that
will automatically determine the number of theoreti-
cal Lrays required [or a specified objective of separ-
ation. It is a simplification of the model proposed in
Viswanathan and Grossmann (1990). In that model,
a binary variable is associated with cach tray to
indicate its existence. Here, the problem is viewed as
that of determining the optimal locations for the
reflux and boilup. Thus, in some ways it is similar to
the problem of optimum feed location. However, the
important difference is that unlike that problem,
generally nothing is known explicitly aboul the
flowrate, composition and temperature of cither the
reflux or the boilup. The model is computationally
more efficient: even difficult, nonideal distillation
problems can be solved, as will be seen later.

MINLP MODFEL

Consider a distillation column (Fig, 1) with ¥
trays. including the.condenser and the reboiler. The
stages are numbered bottom upwards (like the floors
of a building) so that the reboiler is the first tray and
the condenser is the last (Mth) tray. (For definileness,
only the total condenser and kettle-type reboiler case
is considered—the other cases_ean be dealt with
similarly.) S

Let J={1,2,...,N} denote the set of trays and
let R = {1}, C ={N} and COL ={2,3, =
denote subsets corresponding to the trays in the
reboiler, the condenser and those within the column,
respectively, The value of N is decided from reason-
able estimates (such as those given by Giililand
correlation) of the upper bounds on the number of
trays in the rectifying and stripping sections.

Let i,y denote the location of the feed. Then, the
set ol candidate locations for the reflux are
Viteed 4 Lidiea + 2,... (N = 1)}, However, in some
cases, it may be known that a certain minimum
number of trays are required in the rectifying ssction.
So, more gencrally, let i, denote the lowsrmost
location for the entering tray for reflux (sec Fig. 1).
Then:

(e + 1) S ipins

and the subset of contiguous capdidate locations for
the reflux is:

REE = {lips b+ 1, N = 1)
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Fig. 1. Determination of minimum number of trays for
specified separation objective.

Similarly, let ,,,, denote the uppermost location for
the entering tray for boilup. Then:

fyan S (e = 1)

and the subset of contiguous candidate locations for
boilup is:

BU={23, .1 haa— 1, (A
For later use, let
FLOC = (igees)
AF={ilia<i<(N =1},
BF={i|2< i <ip).
Then
REFc AF, BU= BF
and
COL = BFUFLOCUAF.

Let ¢ denote the number of components in the feed
and let J={1,2,...,¢} denote the corresponding
index set. Let F, Ty, pr, 2 and /i denote, respectively,
the molar flowrate, temperature, pressure, the vector
of mole-fractions (with components, z, 2, - -
and the molar specific enthalpy of the feed.
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Let p, denole the presssure prevailing on tray i. It
is assumed thal Py, = Pro Pooe = P2y Piop =Py~ and
Peon = P are given, although one may treat them as
variables to be determined, if desired. (In many cascs,
it may be quite adequate to regard them as equal to
the same value.) Then p,Zp, =" py-) 2 py. and
for simplicity, let pr 2 Pro.

Let L;, x;, h* and f}; denate the molar flowrate, the
vector of mole-fractions, the molar specific enthalpy
and the fugacity of component j, respectively of the
liquid leaving tray i Similarly, let ¥, y,, i} and [
denote the corresponding quantities for the vapor.
Let T, denote the temperature prevailing on tray I,
Then:

I =L (TP X Xgs 0 Xe)
Sy =L TP Yas Yar e o Vi)
hb= (T pos Xus Xiza oo o0 X)
BY =k (TP as Ve ¥e) (n

where the functions on the right-hand sides depend
on the thermodynamic model used.

Let P, and P, denote the top and bottom product
rates, respectively, and let r denote the reflux ratio.
Let [, denote any reasonable estimate on the upper
bound of liquid and vapor flowrates within the
system.

Let v, and /j, denote the recoveries of the light key
in the top product (liquid or vapor, depending) and
the heavy key in the botiom liquid product, respect-
ively. Let ¢, and g, denote the reboiler and con-
denser duties, respectively. Finally, let ref;, i € REF
denote the amount of reflux entering on tray i and let
21 be the binary variable associated with the selec-
tion of tray i for the location of the reflux, ic.
2 = 1ifT all the reflux enters on tray i. Similarly, for
bu, and z}*.

The modeling equations are as follows:

e Phase cquilibrium relations:

Si=ry jel, iel ()]
e Phase equilibrium error:

Yoy - Y py=0, iel ] (3)

jed jed

e Total material balances:

V‘_L-( ¥ "éﬁ-+L‘,+P.)=0. ieC,
"eREF
L+ V=L, —Vi_,—ref,=0, ieREF,
L4 V,—Ly = Vi =0, i€AF\REF,
L+ V=L, =V, —F=0, ie FLOC,

L+ Vi—Liy—V,.,=0, ieBF\BU
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Table 1. Data for Ternaryl

System Benzene-toluenc-a-xylene
Thermodynamic model vapor phase: ideal

liquid phase: ideal
Source for thermodynamic data Reid et al. (1987)
Condenser Lype Total
Reboiler type Kettle type
Estimated maximum number of trays (V) k0]
Feed location (ir,) 17
Lowermost location for reflux (iy,) 20
Uppermost location for boilup (i, ) 14

F =100, z; =(0.15, 0.25, 0,60}
pe=1.2bar, 1, =391.172K
Prev = 1.25, pyo = 1.20. ppp = 110, poy = 1.05 bar

Top product rate, P, 40
Purily constaint on bottem product x,y 20995
per bound on reflux ratio rels
Ochctlve function Se+ Y ord(D)z - T ord(i)zM 41
waEr v
Direction of optimization Minimize
L+ Vi— Ly = V,_,—bu=0, ieBU, Lixy+Viyi—LiXy = Viayio, =0,
L+Vi+ ¥ bu—L, =0, ieR, . ie BF\BU,
redu
L=r Lixy+ Viyy=Ligi X y= Vi1 Yicry
v, =0, —bux,=0, ieBU,
Y ref,=rp, f.i.t,j-+(V,+ 7 buf)v,‘, —LiyyX,=0, ieR. (5)
i« REF re By
Ly=0. @) e Enthalpy balances:

. L+ Vil =L by
e Component material balances: ¥j e J:

—V,_\h_ —refik =0, ieREF,
H-I)'-—TAJ_(“%F"JC"" L,+P,)x,,-=0. ieC, Lht+ VY =L bt =V by, =0,
ie AF\REF,

Lt Vhy =L b =V, hY =0,

Lixy+ Viyy = LiiXp = ViciViony

—refixy=0, ieREF,

ie FLOC,
E Viyy— L, -V =0 ;
B e T Lkt ViRY = Lok = Vi bl =0,
ie AF\REF, ie BF\BU,

LI'U Vi '.,_Lnlxiﬂ.,," Vi-!}'l-l.} L‘.h:'i- I’].‘l;’—-LHth'

=0, ieFLOC, =V =buht =0, ieBU. (6)

Table 2. Data for Ternary2

System Benzenc-toluene-o-xylene
Thermodynamic model vapor phase: ideal
liquid phase: ideal
Source for thermodynamic data Reid ¢ al. (1987)
Condenser Lype Total
Reboiler type Kettle type
Estimated maximum number of trays (N) 30
Feed location (ig.) 16
Lowermost location of reflux (i ) 20
Uppermost location for boilup (iym,, ) 12
F =100,z =(0.15,0.25,0.60)
pe=1.2bar, (= 391172 K
Peen = 125, Py = 1,20, py = 110, iy = 1.05 bar
Top product rate, P,
Purity constraint on top product T,n. 30995
per bound on reflux ratio
E]m.lwr funetion 5r + [ ord(i = ¥ erd(i)=M +
b

Direction of optimization Mlnmuzc
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Table 3. Data for unit

System
Thermodynamic model

Source for thermodynamic data
Condenser type

Reboiler lype

Estimated maximum number of trays (N)
Feed location (i)

Lowermost location of reflux (i)
Uppermost location for boilup (i,
F =100, 2= (0.1,0.75,0.15)
pr=1.055bar, r;= J48.675 K

Pron = L1, Py = 1055, P = 1.035, Py = 1015 bar
Upper bound on reflux ratio

Objective function

Direction of optimization

Acclone-acetonitrile-water
vapor phase: virial

liquid phase: UNIQUAC
Prausnitz er al. (1980)
Partial

Kettle type

13

10

1

9

r<so

(65 + H1) = 3.33 % 107 (¢ = Gon)

—D_I[ Y ord(i):{— ¥ ord(i)z]+ 1]
voer i

Maximize

e Reflux enters exactly on one tray:
1efi < foun 1

T o=l m

ie REF

e Reboiled vapor enters exactly on one tray:

b1t < fran 2

T o, ®)

ie 8L

® Pressure profile:

Py = Peon+
Pr-1 = Pops
P2 = Prons E
P1 = Prebs
pisp-, 1€COL,

Pt =2+ Pict S AP — Pup)f, i€ REF,
Pt =200+ Py 2 Apup— Pon)={, 1€ REF,

Pi— Piop S =2 (Poo—Pip) i€ REF,

Pioi =2+ P =0,
i € (AF\ REFYUFLOC U(BF\BU).

Pt =20t Prot € AP = Pip)ily 1€ BU,

Pior =280+ Pivt 2 Uproy — P )20, € BU,
P Poa 2 U = 2 Py = Po), P € BU.
)]

The above equations and incqualities are quite
sell-explanatory. If i, and i, denote respectively, the
tray on which the reflux and the reboiled yapor
enters, then in the above, the system corresponding to
pressure profile ensures that the profile is flat between
2 and i, (i.e. p,= Pu, for 2<i <i,), linear between
iye and iy, and again flat between i and N —1 (i
Pi=Pup fOT i STSN-1)

The MINLP problem is to minimize or maximize
an objective function subject to all the above
equations and inequalities (1-9), bounds on the vari-
ables, and specifications such as top/bottom product
rates, purily, recovery, etc.

1t is perhaps worth pointing out that using com-
ponent molar flowrates instead of mole-fractions in

Table 4, Data for ethanol

System
Thermodynamic model

Source for thermodynamic data
Condenser type

Reboiler type

Estimaled maximum number of trays (N)
Feed location (i)

Lowermost location of reflux (/)
Uppermost location for boilup (fum,)

F = 100, 2 = (0.05,0.95)

py = 1055 bar. 1, = 364,588 K.

Prow = L4 Py = 1.055, pop = 1035, peg, = 1,015 bar
Azeotropy condition

“*Purity” condition

Recovery condition

Bounds on reflux ratio

Objective function

Direction of oplimization

Ethanol -water

vapor phase; virial
liquid phase: UNIQUAC
Prausnitz et al. (1980)
Total

Kettle type

25

4

Xy 2 ¥y = 0.005
v5, > 0.96 (Fzy)

Minimize
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Table 5. Problem sizes
No. of variables No. of rows No. of nonzeros
Problem Continuous Rinary Total Linear Nonlinear Total Lincar Nonlinear Total
Ternaryl 398 23 421 269 203 472 672 1715 2387
Ternaryl 396 21 417 269 197 466 648 1699 2347
Unit 891 2 913 219 678 957 1501 3741 5242
Ethanol 662 20 682 298 453 751 1198 2311 3509

the modeling equations would be inappropriate in the
present context. To see this, let i denote the tray on
which reflux enters. Then:

Li=0 fori=ig+l,ig+2...,(N=1).

i.e. there is no flow of liquid on these trays. Neverthe-
less, the mole-fractions:

Xpo JEJ, P=ig+l, iy+2,...,(N=1),

are not zero. In fact,

Xy=X . JEJS di=ig+2..,(N=1)

Were one to use component flows, then ratios of the
form 0/0 have to be dealt with.

RESULTS

The data and problem size for four cases (two
ideal, two nonideal) are presented in Tables 1-5. The
models were solved using a recent version ol DJ-
COPT + + (Viswanathan and Grossmann, 1990)
integrated in GAMS (Version 2.25). The compu-
tational resource usages are given in Table 6. The
values of the binary variables at the end of major
iterations determined by the AP/OA/ER algorithm
are shown in Table 7. Recall that the OA/ER/AP
algorithm for MINLP begins with the solution of the
NLP by treating the binary variables as continuous
variables with the lower bound zero and upper bound
one “relaxed NLP". The algorithm terminates when
no further improvement takes place in the solution of
NLP subproblems. Optimal solutions are shown in
Table 8.

Table 6, Solver times

Solver times

Major NLP  MIP  Total NLP MLP
Problem  iterations (min) (min) (min) (%) (")
Ternaryl 3 281 431 702 395 605
Ternary2 6 322 1341 1663 1936 B0.64
Unit 5 1454 2580 40.34 361 639
Ethanol 3 107 146 263 449 551

Notes: N major iterations mean & NLP problems (including relaxed
NLP) and (¥ = 1) MIP problems. Times reported are CPU min
on an IBM RS 6000 running AIX 3.1. Relaxed NLPs were
solved using CONOPT; other NLPs with MINOS 5.3 in GAMS
2.25 for Ternaryl and Ternary2 and with CONOPT for unit
and ethanol. MIPs were solved with OSL release 2.001; SOS51
conditions are nol implemented in  this release of
GAMS/DICOPT + +/OSL interface (even though they are im-
plemented in GAMS/OSL interface for MILPs).

Although optimization provides a better frame-
work for studying nonideal distillation problems,
finding the right set of constraints and a suitable
objective function is not always a trivial task.
For problems Ternaryl, Ternary2 and Ethanol
(Examples |, 2 and 4), the objective function is a
trade-ofT between number of trays (capital cost) and
reflux ratio (operating cost). For the problem unit in
Example 3, the form of the objective function was
suggested in Kumar and Lucia (1988). It represeats a
trade-ofl’ between number of trays, reboiler and con-
denser duties and recoveries of the light and heavy
keys in the top vapor and botiom liquid products,
respectively.

As is well-known, the ethanol-water system of
Example 4 forms an azeotrope. At 1,013 bar, the
UNIQUAC model predicts the azeotrope tempera-
ture to be 351.03 K with the ethanol mole-fraction-at
0.913. The usual specifications like product rate and
purity do not seem to work for this system, and so the
following “purity”™ and recovery constaints were
used:

X, <yq. Vief

Xy 2 Y — €
i R(Fz,),

where ¢ specifies the closeness of the liquid and vapor
compositions in the condensate and R is the recovery
factor for ethanol. The values used were ¢ = 0.005
and R =0.96.

To appreciate the significance of the oplimum
design presented in Table 8a, note, for example,
that for Ternaryl, with |REF| =10 and |BU| = 13,
there are 130 possible combinations. The OA/ER/AP
algorithm required the solution of just 3 NLP
problems and the solution of 2 MIP master
problems.

Computationally, the solution of the relaxed NLP
proves to be the most difficult, especially for nonideal
systems. For the nonlinear programs (NLPs), both
codes CONOPT and MINOS were used. CONOPT
is based on the Generalized Reduced Gradient
(GRG) algorithm together with many refinements
(Drud, 1992), while MINOS is based on a projected
Lagrangean method (Murtagh and Saunders, 1982).
For the nonideal systems, CONOPT was able 1o find
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Table 7a. Paths to solutions-nonzero binary variables

Problem Iteration Nonzero binary variables
Ternaryl 1 2P = 0,068, % = 0932
=T = 0.888, =5 = 0,002, :§f = 0.023
2 =0.036, 2 = 0.042, 2 = 0.009
2 B R |
3 AN |
Ternary2 1 23 = 0,089, s} =0.911
25 =0.767, 25 = 0.063, 25 = 0.102, 5 = 0,067

Tt R
Al oy =1

Pml,

=

[ P

Unit 2P = 0,037, 28 = 0.963
2T =096, 5 = 0.037
2 P R
3 Bl NPl |
4 =l =]
5 el el
Ethanol 1 =076, 2} = 0.824
27 =0.963, 15 = 0.161
2 el =1
3 Bl o |
Table 7b, Paths to solutions—objective function values
Value of the objective function
Major Major for problem
iteration solution
number step Ternary| Ternary2 Unit Ethanol
L NLP 23,5323 53.9066 80.2360 12.5172
1 MIP 33,5674 60.9648 80,2366 25.6597
2 NLP 39.3286 105.075 74,4537 25.5749
2 MIP 41.5647 1139.13 71.3057 27.9694
3 NLP 41.0322 infeasible 77.5925 27.5952
3 MipP 120077 66,9491
4 WNLP 70.4454 78.4552
4 MIP i 21278.9 58,2258
5 WLP 70.0608 71.6466
5 MIP 341302
6 NLP 72,1965

the optimum for the relaxed NLP, while MINOS with It should also be noted that the computational re-
delault settings could not, quirements for the MIP master problems will de-

For the mixed integer programs (MIPs) the Optim-  crease significantly with the implementation of the
ization Subroutine Library (OSL) of IBM was used.  SOSI structure of the model, (7) and (8).

Table 8a. Optimal solutions—column design

Entering tray number for
Objective Refluyy, —mm—————

Problem function ratio  Reboiled vapor  Reflux
Ternaryl 39.33 107 3 26
Ternary2 70.06 9.01 3 27
Unit 78.46 16.54 2 2
Ethanol 25.58 5.58 3 2

Table 8b. Optimal solutions—products

Top product, P, Bottem product, P,
Problem Flowrate Composition Flowrate Compaosition
Ternary! 40.0 (0.375,0.617,0.007) 60.0 (0.000, 0.005, 0.995)
Ternary2 15.0 (0.995,0.005, 0.000) 85.0 (0.001, 0.293, 0.706)
Unit 8.931 (0.964,0.007,0.029) 91.049 (0.015,0.823,0.162)

Ethanol 5.497 (0.873,0.127) 94.503 (0.002, 0.998)
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CONCLUSIONS

This work has presented simple MINLP model for
finding the number of trays lor a separation objective,
The location of the feed tray is fixed and the problem
is viewed as one of finding optimum locations for the
reflux and the boilup. As shown in the results, even
difficult, nonideal distillation problems can be solved
with the OA/ER/AP algorithm,
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