Az atommagok g -sugárzásának
keletkezése és alapvetõ tulajdonságai


Az atommagok g -sugárzásának keletkezése a nukleonok egymás közötti elektromágneses kölcsönhatásának az eredménye.

    Az atommagok különbözõ állapotokban (nuclear states) létezhetnek. Ezen állapotok belsõ energiával, spinnel, paritással stb. jellemezhetõk. A jellemzõ mennyiségek, mint az a mikrovilágban szokásos, csak meghatározott, diszkrét értékek lehetnek. Az atommag különbözõ állapotainak energiái például energiaszinteket alkotnak. Az energiaszintek az atommag kisebb belsõ energiáinál viszonylag távol vannak egymástól, de az energia növekedésével egyre közelebbre kerülnek egymáshoz (és “vastagságuk” is nõ), majd átfedik egymást és folytonossá válnak. A legkisebb energiájú energiaszinthez tartozó állapot kitüntetett, és az atommag alapállapotának (ground state) nevezzük. Az alapállapot belsõ energiája definíció szerint nulla. A többi szintet az atommag gerjesztett állapotának (excited states) nevezzük, és ezek energiája (a gerjesztési energia, excitation energy) nagyobb nullánál.

    Gerjesztett állapotba nukleáris kölcsönhatások eredményeként kerülhet az atommag. Gyakran elõfordul, hogy radioaktív (pl. a, b+, b- vagy EC) bomlás (radioactive decay) vagy atommagreakció (nuclear reaction) eredményeként létrejött, ún. leánymag (daughter nucleus) kiválasztási szabályok vagy kinematikai okok miatt nem alapállapotban, hanem eleve gerjesztett állapotban keletkezik. A gerjesztett állapotok nem stabilak, a gerjesztett állapotban lévõ atommag véges idõ eltelte után átalakul. Az átalakulás sebességét az átlagos élettartam fejezi ki, ami mérhetetlenül rövid vagy nagyon hosszú idõ is lehet. Az átalakulás különbözõ módon történhet. Leggyakrabban ugyanazon atommag alacsonyabb energiájú gerjesztett állapotába vagy alapállapotába alakul át a gerjesztett rendszer. Ilyen átalakulás során g -sugárzás kibocsájtására kerül sor (sugárzásos átmenet, radiative transition) vagy belsõ konverzió játszódik le. A sugárzásos átmenet lehet egyszeres, amikor az atommag egyetlen g -foton kibocsájtásával alapállapotba kerül, vagy kaszkád jellegû, amikor a gerjesztés fokozatosan, néhány energiaszinten keresztül, több g -sugárzás egymást követõ (de gyakorlati szempontból egyidõben történõ) kibocsájtásával szûnik meg. Bizonyos esetekben bekövetkezhet más részecske (pl. a, n vagy p) kibocsájtása, esetleg spontán maghasadás is, de ilyenkor a proton- és/vagy neutronszám is változik, és a keletkezõ atommag egy minõségileg új, tehát más energiaszintekkel jellemezhetõ. A különbözõ átalakulások valószínûsége elágazási arányokkal fejezhetõ ki.
 

Az említett jellemzõket mint alaptulajdonságokat magszerkezeti és bomlási diagramokon (decay scheme) tüntetik fel. Mindezt a 60Co atommag példáján mutatjuk be.
 

A g -sugárzás energiaspektruma diszkrét.

    Az atommag g -sugárzása a mag két, különbözõ állapota közötti átalulás során keletkezik. Az állapotok energiája diszkrét. Az energiák (energiaszintek) közötti különbség (DE) szintén diszkrét érték. Kibocsájtáskor a g -sugárzás (foton) visszalöki az atommagot, így az említett energiakülönbség megoszlik a foton és az atommag között az energia- és az impulzusmegmaradás törvényének megfelelõen. Következésképpen a visszalökött, mmag tömeg? atommag kinetikus energiája (recoil energy) szintén diszkrét érték:

Tmag = Eg2 / (2mmag·c2) @ Eg2 / (2u·Ar·c2) = 0.5368 10–6· Eg2 / Ar ,

ahol u az atomi tömegegység és Ar a relatív atomtömeg, illetve az energiaértékek egysége keV. Ezen megfontolások alapján nyilvánvaló, hogy a g -sugárzás energiája diszkrét érték:

Eg = DE – Tmag@ DE .

Ráadásul, a visszalökött mag energiája általában a 0.1–50 eV tartományba esik, és legtöbbször elhanyagolható az energiaszintek közötti különbséggel (>10 keV) összehasonlítva.

    Ugyanakkor megjegyezzük, hogy a g -sugárzás jól meghatározott energiaértékének elkerülhetetlen bizonytalansága is van. Az atommag gerjesztett állapotainak véges átlagos élettartama(t ) miatt minden energiaszinthez természetes energiaszélesség (vonalszélesség, level width, G  ) rendelhetõ a Heisenberg-féle bizonytalansági elv értelmében:

= h / 2p /t .

Tehát, minél gyorsabban bomlik el egy adott gerjesztett állapot, annál nagyobb a gerjesztési energia értékének bizonytalansága. Csak a stabil atommagok alapállapotai jellemezhetõk elvileg pontosan meghatározott energiaértékkel. A g -sugárzás ún. természetes energiaszélessége (az atommag gerjesztett állapotainak természetes energiaszélességébõl adódó bizonytalanság) gyakorlati esetekben nem haladja meg a mintegy 10–6–10–2 eV-ot, ezért elhanyagolható a g -sugárzás energiájával és az energiaérték mérési pontosságával összehasonlítva. Az atommag visszalökõdési energiája kicsi a g -sugárzás energiájához képest, de jelentõsen nagyobb a természetes energiaszélességnél (Tmag >> G ). Ez a felismerés elvezet a Mössbauer-spektroszkópia alapjaihoz is.
 

A g -sugárzás kibocsájtási valószínûségét a kiválasztási szabályok adják meg.

    Az emittált foton valamint az atommag kezdeti és végállapota által alkotott zárt rendszerre nemcsak az említett, kinematikai megmaradási törvények vonatkoznak, de a kvantummechanika (impulzusmomentum és spin, paritás, izospin stb.) megmaradási törvényeinek is érvényesülniük kell. Amennyiben ezek az utóbbi megmaradási tételek nem teljesülnek, akkor az átmenet nem jöhet létre annak ellenére, hogy energetikailag vagy kinematikailag ez lehetséges. A sugárzásos átmenet valószínûsége (transition probability) elsõsorban a két, érintett állapot impulzusmomentumának, paritásának és energiájának a különbségétõl, illetve az atommag tömegszámától függ.

    g -sugárzás kibocsájtása az atommag elektromos illetve mágneses momentumait is megváltoztatja (az atommag elektromos töltésének vagy pl. az impulzusmomentumának átrendezõdése következtében) a belsõ energián túl. A változás meghatározza a kibocsájtott g -sugárzás jellegét, tehát elektromos illetve mágneses multipolaritásúg -sugárzás (electric or magnetic multipolarity) különböztethetõ meg. Mindkét esetben lehetõség van a megfelelõ momentum egységnyi vagy több kvantumszámmal történõ változására. Ennek megfelelõen a kibocsájtott sugárzás lehet elektromos dipól- (E1), elektromos kvadrupól- (E2), elektromos oktupólsugárzás (E3) stb., illetve mágneses dipól- (M1), mágneses kvadrupól- (M2) és mágneses oktupólsugárzás (M3) stb. Hasonlóan, ha a mag érintett állapotainak paritása azonos, akkor a foton paritása pozitív, ha az állapotok paritása különbözõ, akkor a foton paritása negatív. Ráadásul a multipoláris jelleg és a paritás között összefüggés van: az E1, M2, E3, . . . átmenetek paritásváltozással járnak, míg az M1, E2, M3, . . . átmenetek nem változtatják meg az atommag paritását.

    Ezen összetett feltételek alapján bizonyos szabályok határozhatók meg (ún. kiválasztási szabályok, selection rules), amelyek megmutatják, hogy egy adott, gerjesztett és zárt rendszer energetikailag lehetséges átmenetei közül melyek mennek ténylegesen végbe. A kiválasztási szabályok bizonyos átmeneteket kizárnak, a többit különbözõ mértékben valószínûsítik. A tendenciákat tekintve elmondható, hogy az impulzusmomemtum-különbség (DI) növekedésével a sugárzásos átmenet valószínûsége általában gyorsan csökkenti, míg az átmenet növekvõ energiája növeli a folyamat valószínûségét. Állandó multipolaritás mellett az elektromos átmenetek valószínûbbek a mágneses átmeneteknél. A megengedett lehetõségek közül leggyakrabban csak egy átmenet dominál. Elõfordul azonban, hogy két, különbözõ átmenet valószínûsége összemérhetõ, ezért mindkettõ megvalósul (kevert átmenetek).

    Az atommag egy adott gerjesztett állapotának átlagos élettartamát az összes lehetséges átalakulás valószínûségének az összege határozza meg független átmenetek esetén. A gerjesztett állapotok átlagos élettartama általában 10–10 s nagyságrendû vagy ennél kisebb.